Ciencias Naturales 3  
 
  COMPOSICIÓN DE LA MATERIA 25-04-2025 11:49 (UTC)
   
 

ECUACIONES QUÍMICAS

Una ecuación química es una descripción simbólica de una reacción química. Muestra las sustancias que reaccionan (reactivos ó reactantes) y las sustancias o productos que se obtienen. También nos indican las cantidades relativas de las sustancias que intervienen en la reacción. Las ecuaciones químicas son el modo de representarlas.

Importancia de la ecuación química

La ecuación química nos ayuda a visualizar el reactivo que son los que tendran una reacción química y el producto que es lo que se obtiene de este proceso. Además podemos ubicar los simbolos quimicos de cada uno de los elementos que esten dentro de la ecuación y poder balancearlos con mayor facilidad y gran rapidez.

Interpretación de una ecuación química

Un caso general de ecuación química sería:

donde:

  • A, B, C, D, representan los símbolos químicos de las moléculas ó átomos que reaccionan (lado izquierdo) y los que se producen (lado derecho).
  • a, b, c, d, representan los coeficientes estequiométricos, que deben ser ajustados de manera que sean reflejo de la ley de conservación de la masa.

La interpretación física de los coeficientes estequiométricos, si estos son números enteros y positivos, puede ser en átomos ó moles:

Así, se diría de la ecuación de geometría esteqiometrica se subdivide en la siguiente:

1. Cuando "a" átomos (ó moléculas) de A reaccionan con "b" átomos (ó moléculas) de B producen "c" átomos (ó moléculas) de C, y "d" átomos (ó moléculas) de D.

2. Cuando "a" moles de átomos (ó moléculas) de A reaccionan con "b" moles de átomos (ó moléculas) de B producen "c" moles de átomos (ó moléculas) de C, y "d" moles de átomos (ó moléculas) de D.

Por ejemplo el hidrógeno (H2) puede reaccionar con oxígeno (O2) para dar agua (H2O). La ecuación química para esta reacción se escribe:

El símbolo "+" se lee como "reacciona con", mientras que el símbolo "→" significa "irreversible" o "produce". Para ajustar la ecuación, ponemos los coeficientes estequiométricos.

La ecuación está ajustada y puede ser interpretada como 2 mol de moléculas de Hidrógeno reaccionan con 1 mol de moléculas de Oxígeno, produciendo 2 mol del moléculas de Agua.

Las fórmulas químicas a la izquierda de "→" representan las sustancias de partida, denominadas reactivos o reactantes; a la derecha de "→" están las fórmulas químicas de las sustancias producidas, denominadas productos. Los números delante de las fórmulas son llamados coeficientes estequiométricos. Estos deben ser tales que la ecuación química esté balanceada, Es decir, que el número de átomos de cada elemento de un lado y del otro sea el mismo. Los coeficientes deben ser enteros positivos, y el uno se omite. En las únicas reacciones que esto no se produce, es en las reacciones nucleares.

Adicionalmente, se pueden agregar (entre paréntesis y como subíndice) el estado de cada sustancia participante: sólido (S), líquido (l), acuoso (Ac) O gaseoso (g).

En el ejemplo del agua:

 

REACCIONES QUÍMICAS

Una reacción química o cambio químico es todo proceso químico en el cual una o más sustancias (llamadas reactivos), por efecto de un factor energético, se transforman en otras sustancias llamadas productos. Esas sustancias pueden ser elementos o compuestos. Un ejemplo de reacción química es la formación de óxido de hierro producida al reaccionar el oxígeno del aire con el hierro.

A la representación simbólica de las reacciones se les llama ecuaciones químicas.

Los productos obtenidos a partir de ciertos tipos de reactivos dependen de las condiciones bajo las que se da la reacción química. No obstante, tras un estudio cuidadoso se comprueba que, aunque los productos pueden variar según cambien las condiciones, determinadas cantidades permanecen constantes en cualquier reacción química. Estas cantidades constantes, las magnitudes conservadas, incluyen el número de cada tipo de átomo presente, la carga eléctrica y la masa total.

Los tipos de reacciones inorgánicas son: Ácido-base (Neutralización), Combustión, Solubilización, Oxidoreducción y Precipitación.

Modelos de las reacciones químicas

Desde un punto de vista general se pueden postular dos grandes modelos para las Reacciones Químicas: Reacciones ácido-base (sin cambios en los estados de oxidación) y reacciones Redox (con cambios en los estados de oxidación). Sin embargo, podemos estudiarlas teniendo en cuenta que ellas pueden ser:

Nombre

Descripción

Representación

Reacción de síntesis

Elementos o compuestos sencillos se unen para formar un compuesto más complejo.

B+C → BC

Reacción de descomposición

Un compuesto se fragmenta en elementos o compuestos más sencillos.

BC → B+C

Reacción de desplazamiento simple

Un elemento reemplaza a otro en un compuesto.

C + AB → AC + B

Reacción de doble desplazamiento

Los iones en un compuesto cambian lugares con los iones de otro compuesto para formar dos sustancias diferentes.

AB + CD → CB + AD

Rendimiento de una reacción

La cantidad de producto que se suele obtener de una reacción química, es menor que la cantidad teórica. Esto depende de varios factores, como la pureza del reactivo, las reacciones secundarias que puedan tener lugar, etc.

El rendimiento de una reacción se calcula mediante la siguiente fórmula:

Cuando uno de los reactivos esté en exceso, el rendimiento deberá calcularse respecto al reactivo limitante. Y el rendimiento depende del calor que expone la reacción

LEY DE LA CONSERVACIÓN DE LA MATERÍA

La Ley de Conservación de la Masa o Ley de Conservación de la Materia o Ley Lomonósov-Lavoisier es una de las leyes fundamentales en todas las ciencias naturales. Fue elaborada por Mijaíl Lomonósov en 1745 y por Antoine Lavoisier en 1789. Establece un punto muy importante: “En toda reacción química la masa se conserva, es decir, la masa consumida de los reactivos es igual a la masa obtenida de los productos”.

Enunciado

"En toda reacción química la masa se conserva, esto es, la masa total de los reactivos es igual a la masa total de los productos. Tiene una importancia fundamental, ya que permite extraer componentes específicos de alguna materia prima sin tener que desechar el resto; también es importante, debido que nos permite obtener elementos puros cosa que sería imposible, si la materia se destruyera".

Historia

La combustión, uno de los grandes problemas de la química del siglo XVIII, despertó el interés de Antonie Lavoisier porque éste trabajaba en un ensayo sobre la mejora de las técnicas del alumbrado público de París. Comprobó que al calentar metales como el estaño y el plomo en recipientes cerrados con una cantidad limitada de aire, estos se recubrían con una capa de calcinado hasta un momento determinado del calentamiento, el resultado era igual a la masa antes de comenzar el proceso. Si el metal había ganado masa al calcinarse, era evidente que algo del recipiente debía haber perdido la misma cantidad de masa. Ese algo era el aire. Por tanto, Lavoisier demostró que la calcinación de un metal no era el resultado de la pérdida del misterioso flogisto, sino la ganancia de algo muy material: una parte de aire. La experiencia anterior y otras más realizadas por Lavoisier pusieron de manifiesto que si se tiene en cuenta todas las sustancias que forman parte en una reacción química y todos los productos formados, nunca varía la masa.

Para Lavoisier los cambios en las sustancias no producían la creación o destrucción de materia. Experimentalmente (utilizó y perfeccionó la balanza) demostró que la suma de las masas de los reactivos es igual a la suma de las masas de los productos. "Durante un cambio químico no existe cambio en la masa de los reactivos al convertirse en productos".

¿El hierro al oxidarse gana masa? ¿La madera al quemarse pierde masa? [editar]

En un sistema cerrado (sin intercambiar materiales con el exterior) la masa total de las sustancias existentes no varía aunque se produzca cualquier reacción química entre ellas.

En las reacciones nucleares (no en las reacciones químicas habituales) hay una relación entre masa y energía:

La masa se puede transformar en energía y la energía se puede transformar en masa, en una relación de:

Por lo tanto de esto se deduce que en reacciones químicas, la masa se conserva, y la manera más fácil de saber esto es pesándolo con una balanza.

T = M / T

PROPIEDADES DE LOS ACIDOS Y LAS BASES

Un ácido (del latín acidus, que significa agrio) es considerado tradicionalmente como cualquier compuesto químico que, cuando se disuelve en agua, produce una solución con una actividad de catión hidrón mayor que el agua pura, esto es, un pH menor que 7. Esto se aproxima a la definición moderna de Johannes Nicolaus Brønsted y Martin Lowry, quienes definieron independientemente un ácido como un compuesto que dona un catión hidrógeno (H+) a otro compuesto (denominado base). Algunos ejemplos comunes incluyen al ácido acético (en el vinagre), y el ácido sulfúrico (usado en baterías de coches. Los sistemas ácido/base son diferentes de las reacciones redox en que no hay un cambio en el estado de oxidación. Los ácidos pueden existir en forma de sólidos, líquidos, o gases, dependiendo de la temperatura. También pueden existir como sustancias puras o en solución.

Las sustancias químicas que tienen la propiedad de un ácido se les denomina ácidas.

Definiciones y conceptos

Ácidos de Arrhenius

El químico sueco Svante Arrhenius fue el primero en atribuir las propiedades de acidez al hidrógeno en 1884. Un ácido de Arrhenius es una sustancia que aumenta la concentración de catión oxonio, H3O+, cuando se disuelve en agua. Esta definición parte del equilibrio de disociación del agua en oxonio e hidróxido:

H2O(l) + H2O (l) Plantilla:Eqm H3O+(ac) + OH-(ac)

En agua pura, la mayoría de moléculas existen como H2O, pero un número pequeño de moléculas están constantemente disociándose y reasociándose. El agua pura es neutra con respecto a la acidez o basicidad, debido a que la concentración de iones hidróxido es siempre igual a la concentración de iones oxonio. Una base de Arrhenius es una molécula que aumenta la concentración del ion hidróxido cuando está disuelta en agua. Los químicos generalmente escriben H+(ac) y se refieren al ion hidrógeno cuando describen reacciones ácido-base, pero no hay evidencia suficiente de que exista el núcleo de hidrógeno libre, un protón suelto en agua, existe como el ion hidronio, H3O+.

Ácidos de Brønsted

Aunque el concepto de Arrhenius es muy útil para describir muchas reacciones, también está un poco limitado en su alcance. En 1923, los químicos Johannes Nicolaus Brønsted y Thomas Martin Lowry reconocieron independientemente que las reacciones ácido-base involucran la transferencia de un protón. Un ácido de Brønsted-Lowry (o simplemente ácido de Brønsted) es una especie que dona un protón a una base de Brønsted-Lowry. La teoría ácido-base de Brønsted-Lowry tiene varias ventajas sobre la teoría de Arrhenius. Considere las siguientes reacciones del ácido acético (CH3COOH), el ácido orgánico que le da al vinagre su sabor característico:

Ambas teorías describen fácilmente la primera reacción: el CH3COOH actúa como un ácido de Arrhenius porque actúa como fuente de H3O+ cuando está disuelto en agua, y actúa como un ácido de Brønsted al donar un protón al agua. En el segundo ejemplo, el CH3COOH sufre la misma transformación, donando un protón al amoníaco (NH3), pero no puede ser descrito usando la definición de Arrhenius de un ácido, porque la reacción no produce cationes hidronio. La teoría de Brønsted-Lowry también puede ser usada para describir compuestos moleculares, mientras que los ácidos de Arrhenius deben ser compuestos iónicos. El cloruro de hidrógeno (HCl) y amoníaco se combinan bajo varias condiciones diferentes para formar cloruro de amonio, NH4Cl. En solución acuosa, el HCl se comporta como ácido clorhídrico y existe como cationes hidronio y aniones cloruro. Las siguientes reacciones ilustran las limitaciones de la definición de Arrhenius:

1.) H3O+(ac) + Cl-(ac) + NH3 → Cl-(ac) + Plantilla:Chem(aq)

2.) HCl(benceno) + NH3(benceno) → NH4Cl(s)

3.) HCl(g) + NH3(g) → NH4Cl(s)

Como con las reacciones del ácido acético, ambas definiciones trabajan para el primer ejemplo, donde el agua es el solvente y se forma ion hidronio. Las siguientes dos reacciones no involucran la formación de iones, pero pueden ser vistas como reacciones de transferencia de protones. En la segunda reacción, el cloruro de hidrógeno y el amoníaco reaccionan para formar cloruro de amonio sólido en un solvente benceno, y en la tercera, HCl gaseoso y NH3 se combinan para formar el sólido.

Ácidos de Lewis

Un tercer concepto fue propuesto por Gilbert N. Lewis, que incluye reacciones con características ácido-base que no involucran una transferencia de protón. Un ácido de Lewis es una especie que acepta un par de electrones de otra especie; en otras palabras, es un aceptor de par de electrones. Las reacciones ácido-base de Brønsted son reacciones de transferencia de protones, mientras que las reacciones ácido-base de Lewis son transferencias de pares de electrones. Todos los ácidos de Brønsted son también ácidos de Lewis, pero no todos los ácidos de Lewis son ácidos de Brønsted. Las siguientes reacciones podrían ser descritas en términos de química ácido-base.

En la primera reacción, un anión fluoruro, F-, cede un par electrónico al trifluoruro de boro para formar el producto tetrafluoroborato. El fluoruro "pierde" un par de electrones de valencia debido a que los electrones compartidos en el enlace B-F están ubicados en la región de espacio entre los dos núcleos atómicos y, en consecuencia, están más distantes del núcleo del fluoruro que en el anión fluoruro solitario. BF3 es un ácido de Lewis porque acepta el par de electrones del fluoruro. Esta reacción no puede ser descrita en términos de la teoría de Brønsted, debido a que no hay transferencia de protones. La segunda reacción puede ser descrita por cualquiera de las dos últimas teorías. Un protón es transferido desde un ácido de Brønsted no especificado hacia el amoníaco, una base de Brønsted; alternativamente, el amoníaco actúa como una base de Lewis y transfiere un par libre de electrones para formar un enlace con un ion hidrógeno. La especie que gana el par de electrones es el ácido de Lewis; por ejemplo, el átomo de oxígeno en H3O+ gana un par de electrones cuando uno de los enlaces H-O se rompe, y los electrones compartidos en el enlace se localizan en el oxígeno. Dependiendo del contexto, los ácidos de Lewis también pueden ser descritos como agentes reductores o como electrófilo.

La definición de Brønsted-Lowry es la definición más ampliamente usada; salvo que se especifique de otra manera, se asume que las reacciones ácido-base involucran la transferencia de un catión hidrón (H+) de un ácido a una base.

Disociación y equilibrio

Las reacciones de ácidos son generalizadas frecuentemente en la forma HA Plantilla:Eqm H+ + A-, donde HA representa el ácido, y A- es la base conjugada. Los pares ácido-base conjugados difieren en un protón, y pueden ser interconvertidos por la adición o eliminación de un protón (protonación y deprotonación, respectivamente). Obsérvese que el ácido puede ser la especie cargada, y la base conjugada puede ser neutra, en cuyo caso el esquema de reacción generalizada podría ser descrito como HA+ Plantilla:Eqm H+ + A. En solución existe un equilibrio entre el ácido y su base conjugada. La constante de equilibrio K es una expresión de las concentraciones del equilibrio de las moléculas o iones en solución. Los corchetes indican concentración, así [H2O] significa la concentración de [H2O]. La constante de disociación ácida Ka es usada generalmente en el contexto de las reacciones ácido-base. El valor numérico de Ka es igual a la concentración de los productos, dividida por la concentración de los reactantes, donde el reactante es el ácido (HA) y los productos son la base conjugada y H+.

El más fuerte de los dos ácidos tendrá Ka mayor que el ácido más débil; la relación de los iones hidrógeno al ácido será mayor para el ácido más fuerte, puesto que el ácido más fuerte tiene una tendencia mayor a perder su protón. Debido al rango de valores posibles para Ka se extiende por varios órdenes de magnitud, más frecuentemente se utiliza una constante más manipulable, pKa, donde pKa = -log10 Ka. Los ácidos más fuertes tienen pKa más menor que los ácidos débiles. Los valores de pKa. determinados experimentalmente a 25°C en solución acuosa suelen presentarse en libros de texto y material de referencia.

Nomenclatura

En el sistema de nomenclatura clásico, los ácidos son nombrados de acuerdo a sus aniones. El sufijo iónico es eliminad y es reemplazado con un nuevo sufijo (y a veces prefijo), de acuerdo con la tabla siguiente.

Sistema de nomenclatura clásico:

Prefijo Anión

Sufijo Anión

Prefijo Ácido

Sufijo Ácido

Ejemplo

per

ato

per

ácido ico

ácido perclórico (HClO4)

 

ato

 

ácido ico

ácido clórico (HClO3)

 

ito

 

ácido oso

ácido cloroso (HClO2)

hipo

ito

hipo

ácido oso

ácido hipocloroso (HClO)

 

uro

hidro

ácido ico

ácido clorhídrico (HCl)

Por ejemplo, HCl tiene un cloruro como su anión, por lo que el sufijo -uro hace que tome la forma de ácido clorhídrico. En las recomendaciones de nomenclatura IUPAC, simplemente se agrega acuoso al nombre del compuesto iónico. En consecuencia, para el cloruro de hidrógeno, el nombre IUPAC sería cloruro de hidrógeno acuoso. El sufijo -hídrico es agregado sólo si el ácido está compuesto solamente de hidrógeno y un otro elemento.

 

Fuerza de los ácidos

La fuerza de un ácido se refiere a su habilidad o tendencia a perder un protón. Un ácido fuerte es uno que se disocia completamente en agua; en otras palabras, un mol de un ácido fuerte HA se disuelve en agua produciendo un mol de H+ y un mol de su base conjugada, A-, y nada del ácido protonado HA. En contraste, un ácido débil se disocia sólo parcialmente y, en el equilibrio, existen en la solución tanto el ácido como su base conjugada. Algunos ejemplos de ácidos fuertes son el ácido clorhídrico (HCl), ácido yodhídrico (HI), ácido bromhídrico (HBr), ácido perclórico (HClO4), ácido nítrico (HNO3) y ácido sulfúrico (H2SO4). En agua, cada uno de estos se ioniza prácticamente al 100%. Mientras más fuerte sea un ácido, más fácilmente pierde un protón, H+. Dos factores clave que contribuyen a la facilidad de deprotonación son la polaridad del enlace H-A. La fuerza de los ácidos suele ser discutida también en términos de la estabilidad de la base conjugada.

Los ácidos más fuertes tienen Ka más alto, y pKa más bajo que los ácidos más débiles.

Los ácidos alquilsulfónicos y arilsulfónicos, que son oxiácidos orgánicos, son un tipo de ácidos fuertes. Un ejemplo común es el ácido toluensulfónico (ácido tósico o tosílico). A diferencia del ácido sulfúrico mismo, los ácidos sulfónicos pueden ser sólidos. En efecto, el poliestireno funcionalizado en sulfonato de poliestireno, es un plástico sólido fuertemente ácido, que es filtrable.

Los superácidos son ácidos más fuertes que el ácido sulfúrico al 100%. Algunos ejemplos de superácidos son el ácido fluoroantimónico, ácido mágico y ácido perclórico. Los superácidos pueden protonar permanentemente el agua, para producir "sales" de oxonio iónicas, cristalinas. También pueden estabilizar cuantitativamente a los carbocationes.

Polaridad y el efecto inductivo

La polaridad se refiere a la distribución de electrones en un enlace químico, la región de espacio entre dos núcleos atómicos donde se comparte un par de electrones (ver TREPEV). Cuando los dos átomos tienen aproximadamente la misma electronegatividad (potencia para atraer electrones del enlace), los electrones son compartidos aproximadamente por igual y pasan el mismo tiempo en cualquier extremo del enlace. Cuando hay una diferencia significativa en electronegatividades de los dos átomos enlazados, los electrones pasan más tiempo cerca al núcleo del elemento más electronegativo, y se forma un dipolo eléctrico, o separación de cargas, tal que hay una carga parcial negativa localizada en el elemento electronegativo, y una carga parcial positiva en el elemento electropositivo. El hidrógeno es un elemento electropositivo y acumula una carga ligeramente positiva cuando está unido a un elemento electronegativo, como el oxígeno o el bromo. Al decrecer la densidad electrónica en el átomo de hidrógeno, se hace más fácil que sea abstraído en forma de protón, en otras palabras, es más ácido. Al moverse de izquierda a derecha a lo largo de una fila en la tabla periódica, los elementos tienden a hacerse más electronegativos, y la fuerza del ácido binario formado por el elemento aumenta coherentemente:

Fórmula

Nombre

pKa[1]

HF

ácido fluorhídrico

3.17

H2O

agua

15.7

NH3

amoníaco

38

CH4

metano

48

El elemento electronegativo no necesita estar unido directamente al hidrógeno ácido para incrementar su acidez. Un átomo electronegativo puede "jalar" densidad electrónica desde el enlace ácido, a través del efecto inductivo. La habilidad para atraer electrones disminuye rápidamente con la distancia del elemento electronegativo al enlace ácido. El efecto es ilustrado por la siguiente serie de ácidos butanoicos halogenados. El cloro es más electronegativo que el bromo y, en consecuencia, tiene el efecto más fuerte. El átomo de hidrógeno unido al oxígeno es el hidrógeno ácido. El ácido butanoico es un ácido carboxílico.

Estructura

Nombre

pKa[2]

ácido butanoico

≈4.8

ácido 4-clorobutanoico

4.5

ácido 3-clorobutanoico

≈4.0

ácido 2-bromobutanoico

2.93

ácido 2-clorobutanoico

2.86

A la vez que el átomo de cloro se aleja del enlace ácido O-H, el efecto disminuye. Cuando el átomo de cloro está a un átomo de carbono de distancia del grupo ácido carboxílico, la acidez del compuesto se incrementa significativamente, comparado con el ácido butanoico (también llamado ácido butírico). Sin embargo, cuando el átomo de cloro está separado por varios enlaces, el efecto es mucho menor. El bromo es más electronegativo que el carbono o el hidrógeno, pero no tan electronegativo como el cloro, con lo que pKa del ácido 2-bromobutanoico es ligeramente mayor que el pKa del ácido 2-clorobutanoico.

El ácido perclórico es un ácido oxácido fuerte.

El número de átomos electronegativos adyacentes a un enlace ácido también afecta a la fuerza del ácido. Los oxoácidos tienen la fórmula general HOX, donde X puede ser cualquier átomo y puede o no compartir enlaces con otros átomos. Al aumentar el número de átomos o grupos electronegativos en el átomo X, se disminuye la densidad electrónica en el enlace ácido, haciendo que la pérdida del protón sea más fácil. El ácido perclórico es un ácido muy fuerte (pKa ≈ -8), y se disocia completamente en agua. Su fórmula química es HClO4, y comprende un átomo de cloro central, con cuatro átomos de oxígeno alrededor, uno de los cuales está unido a un átomo de hidrógeno extremadamente ácido, que es eliminable fácilmente. En contraste, el ácido clórico (HClO3) es un ácido algo menos fuerte (pKa = -1.0), mientras que el ácido cloroso (HClO2, pKa = +2.0) y el ácido hipocloroso (HClO, pKa = +7.53) son ácidos débiles.[3]

Los ácidos carboxílicos son ácidos orgánicos que contienen un grupo hidroxilo ácido y un grupo carbonilo. Los ácidos carboxílicos pueden ser reducidos al alcohol correspondiente; la sustitución de un átomo de oxígeno electronegativo con dos átomos de hidrógeno electropositivos conduce a un producto que es esencialmente no ácido. La reducción del ácido acético a etanol usando LiAlH4 (hidruro de aluminio y litio o LAH) y éter es un ejemplo de dicha reacción.

El valor de pKa para el etanol es 16, comparado con 4,76 para el ácido acético.[2] [4]

Radio atómico y fuerza del enlace

Otro factor que contribuye a la habilidad de un ácido para perder un protón es la fuerza del enlace entre el hidrógeno ácido y el átomo que lo tiene. Esto, a su vez, es dependiente del tamaño de los átomos que comparten el enlace. Para un ácido HA, a la vez que aumenta el tamaño del átomo A, la fuerza del enlace disminuye, significando esto que es más fácil de ser roto, y la fuerza del ácido aumenta. La fuerza del enlace es una medida de cuánta energía es necesaria para romper un enlace. En otras palabras, requiere menos energía romper el enlace cuando el átomo A se hace más grande, y el protón es más fácilmente removible por una base. Esto explica parcialmente por qué el ácido fluorhídrico es considerado un ácido débil, mientras que los demás ácidos de halógeno (HCl, HBr, HI) son ácidos fuertes. Aunque el flúor es más electronegativo que los otros halógenos, su radio atómico es también mucho menor, por lo que comparte un enlace fuerte con el hidrógeno. Al moverse hacia abajo en una columna en la tabla periódica, los átomos se hacen menos electronegativos, pero también significativamente más grandes, y el tamaño del átomo tiende a dominar la acidez en el enlace con el hidrógeno. El sulfuro de hidrógeno, H2S, es un ácido más fuerte que el agua, incluso aunque el oxígeno es más electronegativo que el azufre. Sólo con los halógenos, esto es debido a que el azufre es más grande que el oxígeno, y el enlace hidrógeno-azufre es más fácilmente rompible que el enlace hidrógeno-oxígeno.

Características químicas

Los ácidos monopróticos son aquellos ácidos que son capaces de donar un protón por molécula durante el proceso de disociación (llamado algunas veces ionización), como se muestra a continuación (simbolizado por HA):

HA(aq) + H2O(l) Plantilla:Eqm H3O+(ac) + A(ac)         Ka

Algunos ejemplos comunes de ácidos monopróticos en ácidos minerales incluyen al ácido clorhídrico (HCl) y el ácido nítrico (HNO3). Por otra parte, para los ácidos orgánicos, el término generalmente indica la presencia de un grupo carboxilo, y algunas veces estos ácidos son conocidos como ácidos monocarboxílicos. Algunos ejemplos de ácidos orgánicos incluyen al ácido fórmico (HCOOH), ácido acético (CH3COOH) y el ácido benzoico (C6H5COOH).

Ácidos polipróticos

Los ácidos polipróticos son capaces de donar más de un protón por molécula de ácido, en contraste a los ácidos monopróticos que sólo donan un protón por molécula. Los tipos específicos de ácidos polipróticos tienen nombres más específicos, como ácido diprótico (dos protones potenciales para donar) y ácido triprótico (tres protones potenciales para donar).

Un ácido diprótico (simbolizado aquí como H2A) puede sufrir una o dos disociaciones, dependiendo del pH. Cada disociación tiene su propia constante de disociación, Ka1 y Ka2.

H2A(ac) + H2O(l) Plantilla:Eqm H3O+(ac) + HA(ac)       Ka1

HA(ac) + H2O(l) Plantilla:Eqm H3O+(ac) + A2−(ac)       Ka2

La primera constante de disociación es mayor que la segunda; esto es: Ka1 > Ka2. Por ejemplo, el ácido sulfúrico (H2SO4) puede donar un protón para formar el anión bisulfato (Plantilla:Chem), para lo que Ka1 es muy grande; luego puede donar un segundo protón para formar el anión sulfato (Plantilla:Chem), donde Ka2 es comparativamente pequeño, indicando una fuerza intermedia. El valor grande de Ka1 para la primera disociación significa que el ácido sulfúrico es un ácido fuerte. De modo similar, el inestable y débil ácido carbónico (H2CO3) puede perder un protón para formar el anión bicarbonato (Plantilla:Chem) y perder un segundo protón para formar el anión carbonato (Plantilla:Chem). Ambos valores de Ka son pequeños, pero Ka1 > Ka2.

Un ácido triprótico (H3A) puede sufrir una, dos, o tres disociaciones, y tiene tres constantes de disociación, donde Ka1 > Ka2 > Ka3.

H3A(ac) + H2O(l) Plantilla:Eqm H3O+(ac) + H2A(ac)        Ka1

H2A(ac) + H2O(l) Plantilla:Eqm H3O+(ac) + HA2−(ac)       Ka2

HA2−(ac) + H2O(l) Plantilla:Eqm H3O+(ac) + A3−(ac)         Ka3

Un ejemplo inorgánico de un ácido triprótico es el ácido ortofosfórico (H3PO4), generalmente llamado simplemente ácido fosfórico. Los tres protones pueden ser perdidos consecutivamente, produciendo H2Plantilla:Chem, luego Plantilla:Chem, y finalmente Plantilla:Chem, el anión ortofosfato, simplemente llamado fosfato. Un ejemplo orgánico de ácido triprótico es el ácido cítrico, que puede perder consecutivamente tres protones para formar finalmente el anión citrato. Aunque las posiciones de los protones en la molécula original pueden ser equivalentes, los valores de Ka difieren puesto que es energéticamente menos favorable perder un protón si la base conjugada está cargada negativamente.

Neutralización

Ácido clorhídrico (en el matraz) reaccionando con vapores de amoníaco para producir cloruro de amonio (humo blanco).

La neutralización es la reacción entre un ácido y una base, produciendo una sal y base neutralizada; por ejemplo, el ácido clorhídrico y el hidróxido de sodio forman cloruro de sodio y agua:

HCl(aq) + NaOH(aq) → H2O(l) + NaCl(aq)

La neutralización es la base de la titulación, donde un indicador de pH muestra el punto de equivalencia cuando el número equivalente de moles de una base han sido añadidos a un ácido. Generalmente se asume incorrectamente que la neutralización resulta en una solución con pH 7,0, lo que es solamente el caso cuando el ácido y la base tienen fuerza similar durante la reacción. La neutralización con una base más débil que el ácido resulta en una sal débilmente ácida. Un ejemplo es el cloruro de amonio, que es debilmente ácido, producido a partir del ácido fuerte cloruro de hidrógeno y la base débil amoníaco. Recíprocamente, la neutralización de un ácido débil con una base fuerte produce una sal débilmente básica, por ejemplo, el fluoruro de sodio, formado a partir del fluoruro de hidrógeno y el hidróxido de sodio.

Equilibrio ácido débil/base débil

Para que se pueda perder un protón, es necesario que el pH del sistema suba sobre el valor de pKa del ácido protonado. La disminución en la concentración de H+ en la solución básica desplaza el equilibrio hacia la base conjugada (la forma deprotonada del ácido). En soluciones a menor pH (más ácidas), hay suficiente concentración de H+ en la solución para que el ácido permanezca en su forma protonada, o para que se protone la base conjugada.

Las soluciones de ácidos débiles y sales de sus bases conjugadas forman las soluciones tampón.

Dureza de ácidos

En 1963, Pearson introdujo el concepto de ácidos y bases duros y blandos. Son ácidos duros aquellos cationes de pequeño tamaño y alta carga, de baja polarizabilidad: alcalinos, alcalinotérreos ligeros, cationes de transición de alta carga, como el Ti4+, Cr3+, Fe3+, Co2+, etc.

Son ácidos blandos las especies químicas de gran tamaño, pequeña o nula carga, y alta polarizabilidad: metales más pesados de carga más baja, como Ag+, Cu+, Pt2+, Hg2+, etc.

Las especies duras tienden a combinarse entre sí. La interacción duro-duro o blando-blando conduce a especies más estables. Esto se debe a un mayor solapamiento de orbitales, que origina un enlace más fuerte que en las interacciones duro-blando o blando-duro. Lo anterior es útil, de forma aproximada, para predecir el sentido de numerosas reacciones.

Aplicaciones de los ácidos

Hay numerosos usos de los ácidos. Los ácidos son usados frecuentemente para eliminar herrumbre y otra corrosión de los metales en un proceso conocido como. Pueden ser usados también como electrólitos en una batería, como el ácido sulfúrico en una batería de carro.

Los ácidos fuertes, el ácido sulfúrico en particular, son ampliamente usados en procesamiento de minerales. Por ejemplo, los minerales de fosfato reaccionan con ácido sulfúrico produciendo ácido fosfórico para la producción de fertilizantes, y el zinc es producido disolviendo óxido de zinc en ácido sulfúrico, purificando la solución y aplicando electrólisis.

En la industria química, los ácidos reaccionan en las reacciones de neutralización para producir sales. Por ejemplo, el ácido nítrico reacciona con el amoníaco para producir nitrato de amonio, un fertilizante. Adicionalmente, los ácidos carboxílicos pueden ser esterificados con alcoholes en presencia de ácido sulfúrico, para producir ésteres.

Los ácidos son usados como catalizadores; por ejemplo, el ácido sulfúrico es usado en grandes cantidades en el proceso de alquilación para producir gasolina. Los ácidos fuertes, como el ácido sulfúrico, fosfórico y clorhídrico, también tienen efecto en reacciones de deshidratación y condensación. Los ácidos son usados también como aditivos en bebidas y alimentos, puesto que alteran su sabor y sirven como preservantes. Por ejemplo, el ácido fosfórico es un componente de las bebidas con cola.

SALES Y SUSTANCIAS ORGÁNICAS

La sal de mesa, conocida popularmente de forma abreviada como sal, se trata de la sal específica denominada cloruro sódico (o cloruro de sodio), cuya fórmula química es NaCl. Otras denominaciones frecuentes son: sal marina y sal común. Se obtiene fundamentalmente de la evaporación del agua marina o de su extracción minera en forma de roca-mineral denominada halita.[1]

Cristales de sal procedente de mina.

Cristales de sal refinada vistos de cerca, esta sal es moderna y extraída de vaporizadores al vacío, esa es la razón de la igualdad en los granos.

Mercado de sal en Mopti (Tombuktú).

La sal proporciona a los alimentos uno de los sabores básicos: el salado,[2] debido a que en la lengua poseemos receptores específicos para el 'sabor salado'. El consumo de sal modifica nuestro comportamiento frente a los alimentos ya que es un generador del apetito e incita su ingesta.[3] [4] Se emplea fundamentalmente en dos áreas: condimento de algunos platos y como un conservante típico de los salazones de carnes y pescado (incluso de algunas verduras), así como en la elaboración de ciertos encurtidos.[5] Desde el siglo XIX los usos industriales de la sal han derivado en diversos procesos como por ejemplo en la industria del papel (Hidróxido de sodio - NaOH-), cosméticos, industria química, etc. En el siglo XXI la producción mundial de sal total destinada a consumo humano no alcanza el 25%.[6]

La sal es la única roca mineral comestible por el humano y es posiblemente el condimento más antiguo empleado por el hombre,[7] su importancia para la vida es tal que ha marcado el desarrollo de la historia en diversas fases, moviendo las economías, siendo objeto de impuestos, monopolios, guerras, etc.[8] Pudiendo llegar a ser un tipo de moneda. El valor que tuvo en la antigüedad ha dejado de ser tal en la actualidad debido a la disminución de su demanda mundial para el consumo humano, en parte debido la mejora en su producción además de la conciencia mundial que ha generado la posible relación que posee con la aparición de la hipertensión.[9] En la época moderna las dietas procuran incluir menos sal en sus composiciones, siendo además posible que los nuevos sistemas de conserva permitan evitar por completo el empleo de la salazón sobre los alimentos: refrigerados, al vacío, pasteurizados, etc.

Hoy en día la sal es fácilmente asequible en cualquier tienda o supermercado moderno, y su forma más habitual suele ser en forma de cristales homogéneos de sal refinada (cristales de roca similares homogéneos y de color blanco), se comercializa en ciertos lugares como un alimento funcional al que se le añade yodo (en forma de yoduro de potasio - KI) para que sea una sal yodada y se prevenga así enfermedades locales como el bocio (véase: enfermedades por carencia de yodo).[10] Suele comercializarse en paquetes de 500 g, 1 kg o 1,5 kg, en tres formatos: fina, gruesa o en forma de copos (esta última se suele dedicar a la alta cocina). Siendo además un condimento barato y muy asequible.

Historia

Ejemplo de envase empleado en la dispensación de la sal: salero.

La ubicación de depósitos de sal tuvo especial relevancia en los emplazamientos finales de asentamientos humanos primitivos. Debido a que, no sólo es una necesidad humana su consumo, sino que permite además conservar los alimentos prolongando su vida comestible. Una de las culturas que antes ha documentado el uso y extracción de la sal es la china (desde el siglo XXVII a. C.).[11] Ya en el Imperio Romano se crearon rutas específicas en Europa para facilitar el mercadeo de sal entre diversas regiones, por ejemplo en Roma tiene origen en una ruta destinada al transporte de sal denominada via salaria, otros ejemplos pueden verse también en: Alemania con la Alte Salzstrasse o en Francia con la Route du Sel.[12] [1] Los intereses existentes entre los mercaderes y los diferentes estados han hecho que se hayan producido numerosas guerras por controlar no sólo los depósitos sino que también los mercados de la sal.[10]

La etimología de algunas palabras proporciona ejemplos claros de la importancia que tuvo la sal en la antigüedad, por ejemplo el término salario en castellano, es derivado del latín salarium, proviene de ‘sal’ y tiene origen en la cantidad de sal que se le daba a un trabajador (en particular, a los legionarios romanos) para poder conservar los alimentos y alimentarse (salarium argentum).[8] La sal era importante en el Mediterráneo y se elaboraba una salsa de pescado en salazón muy popular denominada garum, cuya receta fue posteriormente olvidada en la culinaria occidental.[13] En la antigüedad, algunas formas de gobierno hicieron monopolios de sal e incluso cobraron impuestos. Un ejemplo de impuesto aplicado al consumo de la sal se puede ver en Francia que hasta el siglo XIX se aplicaba un impuesto para la sal denominado la gabelle, y una de las primeras medidas que se tomaron durante la Revolución francesa fue abolirlo, considerado casi uno de los detonadores de la misma. Otra protesta relacionada con los impuestos de la sal se hizo a mediados del siglo XX en denominada Marcha de la sal protagonizada por Gandhi y que posteriormente trajo la independencia con respecto al imperio británico de la India y del Pakistán.

En América las culturas precolombinas empleaban igualmente la sal en el comercio y de esta forma se sabe que los Mayas comerciaban con él empleándolo como moneda.[14] Durante la conquista de América los centros de producción de sal se convirtieron e uno de los objetivos primordiales de dominio. La Colonización europea de América en el norte tuvo la intención de copar y generar nuevas fuentes de elaboración de sal. Las actividades pesqueras hicieron que la demanda de sal creciera en América y se expandió la necesidad de comerciar con el pescado en salazón en otros mercados. Durante la independencia de los Estados Unidos la sal tuvo un papel fundamental a la hora de controlar las tropas de las 'colonias rebeldes'.

En el periodo que va desde el siglo XVII al XX los partidarios contra el consumo excesivo de la sal fueron creciendo, por ejemplo en España el humanista Bernardino Gómez Miedes escribe en el año 1579 un tratado en tres volúmenes denominado Comentarios acerca de la sal.[15] La situación acerca de los beneficios y males del consumo excesivo de sal se fueron clarificando en el siglo XX cuando en el año 1994 el COMA (Committee on Medical Aspects of Food and Nutrition Policy: Comité para la Vigilancia de Aspectos Nutricionales de los Alimentos) recomienda por persona una dosis diaria de 6 g[16] El consumo mundial dedicado a la alimentación se fue reduciendo durante el siglo XIX debido a las mejoras en los sistemas de refrigeración y congelación de alimentos, estas mejoras hicieron que no fuese necesario el uso de sal en la conservación de ciertos productos.[17] A pesar de esta reducción en el consumo 'per cápita' el consumo global ha ido creciendo siempre con el crecimiento la población, así como la aparición de nuevas necesidades y aplicaciones de la sal como es el caso del empleo de la sal en el deshielo de carreteras y calles urbanas.

Propiedades de la sal

Estructura cristalina cúbica de la sal (cada nodo de la red es alternativamente un átomo de sodio o de cloro.

La sal está compuesta de redes de iones de Cl y Na+ en cristales que poseen una estructura en forma de sistema cúbico. El cloruro sódico (NaCl) posee el mismo número de átomos de Cloro que de Sodio y el enlace químico que los une está clasificado como iónico existente entre los iones: un catión de sodio (Na+) y un anión de cloro (Cl–) de tal forma que la molécula NaCl se compone de la siguiente forma:

Na + Cl → Na+ + Cl → NaCl

La estructura cristalina formada por los dos iones posee menos energía que los iones separados y esta una garantía de estabilidad. El NACl posee una estructura cristalina cúbica tan sencilla que puede encontrarse habitualmente en los libros de cristalografía como un ejemplo ilustrado sencillo y pedagógico de red cúbica. Se pueden hacer crecer cristales salinos en el laboratorio (un proceso válido para este fin es el método Bridgman-Stockbarger).

La sal pura posee cerca de 60,66% de peso de cloro elemental y un 39,34% de sodio (a veces aparece aproximado como un 60-40). La sal posee entre sus propiedades químicas una solubilidad de 35,7 g/100 g a 0 °C. La sal posee, no obstante, una solubilidad final diferente en función del tamaño de su cristal, por ejemplo los cristales 'granulares' tardan en disolverse más tiempo que aquellos finos o en forma de copos (un ejemplo es la sal maldon), este efecto puede notarse en la cocina. La velocidad de solubilización hace que las diferentes sales se apliquen en diferentes instantes de la preparación de los alimentos, por ejemplo las sales más solubles se emplean durante la cocción, las menos solubles en las etapas previas a ser servidos a los comensales. El punto de ebullición de los líquidos (disolvente) se incrementa al disolver sal en ellos (al igual que el azúcar), de la misma forma el punto de congelación se reduce, y es por esta razón por la que los alimentos cocinados en salmueras se hacen en menos tiempo.[18] La sal pura no posee propiedades higroscópicas, si poseyese esta propiedad física es debido a la presencia de trazas de cloruro de magnesio o de otras impurezas.[19]

La denominación genérica que se hace de la sal, se aplica a substancias que contienen diferentes concentraciones principales de cloruro sódico, la concentración depende en gran medida de la forma que se procesó la sal. La sal extraída de los evaporadores de vacío es la sal que mayor concentración de ClNa posee (alcanzando porcentajes de hasta un 99% de peso en cloruro). Existen otros elementos incluidos en la sal que poseen concentraciones menores (se suelen denominar oligoelementos) como puede ser: cobre (2 mg/kg), plomo (2 mg/kg), arsénico (0,5 mg/kg), cadmio (0,5 mg/kg), etc. Algunas cualidades físicas de las sales se miden con instrumentos analíticos específicos, como en el caso de la gravedad específica que se pueden medir con un salímetro. Las sales marinas suelen ser más ricas en sulfato de magnesio (Mg SO4•7H2O) y poseen también algunas trazas de yodo así como materiales micro-orgánicos. Por el contrario las sales minerales (o procedentes de minas) suelen contener sulfato de sodio (Na2SO4.10H2O) y calcio (denominado vulgarmente también como yeso y de fórmula química: CaSO4 1/2H2O).

La sal pura es inodora, a veces se aromatiza con ciertas especias para lograr un mejor efecto de condimentación o de salazón. De la misma forma los cristales de sal son incoloros e inodoro, la presencia de colores en algunos casos se debe a la presencia de algunas trazas de algunos minerales (denominados en la teoría cristalina como: centros de farbe) en las redes cristalinas de la sal. La presencia de estas impurezas hace que algunos cristales tengan colores como puede ser las sales del himalaya (rosadas), las de Irán (azules), las de Hawaii (rojas), etc. en algunos casos el color en la sal proviene de las impurezas orgánicas introducidas durante su elaboración, por ejemplo en el caso de la sal negra (kala namak en la India) o la sal ahumada que retiene los colores adquiridos durante el proceso de evaporación de las salmueras mediante fuegos elaborados con la combustión de material orgánico diverso. Los granos de sal miden entre 0,7 mm y 3,2 mm de diámetro. En el caso de la «sal gorda» o «sal de deshielo» puede llegar a los 18 mm.

El empleo de la sal a los alimentos proporciona un sabor salado pero además debe tenerse en cuenta también la capacidad de reforzador de otros aromas y sabores (siempre que se use en pequeñas cantidades). Empleado como condimento en algunos alimentos puede mitigar ligeramente el sabor ácido.[20] Esta comprobado que los niños y personas maduras son capaces de reconocer el sabor salado en salmueras de concentración de 0,05% de sal (una cucharada por cada 10 litros), siendo del doble para las personas de más de 60 años.[20] [21]

Obtención de la sal

Montañas de sal en las salinas de Dry Creek, Adelaide Sur de Australia.

La sal se suele obtener mediante diferentes medios, por regla general se pretende separar por:

  • Evaporación de una salmuera - Se fundamenta en una evaporación de una disolución salina cada vez más concentrada hasta que la sal precipita al fondo. Para lograr la evaporación se suelen emplear medios naturales como la evaporación solar, o bien artificiales como puede ser la cocción en sartenes especiales (como en el caso del briquetage). El agua marina es una fuente inagotable de sal ya que aproximadamente 2,7% (en peso) es NaCl, o dicho de otra forma 78 millones de toneladas métricas por kilómetro cúbico de agua marina, lo que proporciona a este método una forma barata e inagotable de sal.
  • Pulverización de un mineral - La sal se obtiene de minerales extraídos de salares o minas de poca o mediana profundidad. A dicho mineral se le denomina halita y se suele extraerse en dos formas: lodo salino o en forma de roca-mineral. Algunos de los minerales pueden extraerse directamente de lagos salinos o salares que están en la superficie, uno de los más antíguos y más grandes sobre la tierra es el Lago Salino de Bonneville en Utah. Las rocas extraídas se suelen pulverizar por medios mecánicos.

Históricamente la explotación de sal se ha realizado dependiendo la disponibilidad y facilidad de extracción de sal en los lugares, por ejemplo en China es tradicional en la comarca de Shanxi extraer la sal de minas, mientras que en las zonas costeras del mediterráneo o del atlántico es frecuente emplear el agua marina y de los manantiales de agua salada (cursos subterráneos que atraviesan depósitos de sal) y evaporarla al sol en lo que se denominan salinas.[22] Otras fuentes menores de sal son las pequeñas afloraciones de antiguos cráteres de meteoritos procedentes de planetas como Marte (en forma de evaporita).[23] Algunas de las actividades de extracción de sal en las salinas es considerado por algunos autores como una actividad pre-agricultural debido a la dependencia estacional de algunas de las actividades de recolección.[24]

La forma final de los cristales indica al consumidor los métodos empleados en la elaboración de la sal, por ejemplo los cristales cúbicos de fino tamaño y regulares indican por regla general un proceso de evaporación rápido, mientras que los cristales de sal con formas triangulares (o en forma de copo de nieve) indican un proceso de evaporación lento.[6]

Mina de sal en Cardona (Barcelona).

 

QUÍMICA APLICADA

Antoine Lavoisier, considerado el padre de la química moderna.

Doble hélice de la molécula de ADN.

Átomo de helio.

Se denomina química (del egipcio kēme (kem), que significa "tierra") a la ciencia que estudia la composición, estructura y propiedades de la materia, como los cambios que ésta experimenta durante las reacciones químicas y su relación con la energía. Históricamente la química moderna es la evolución de la alquimia tras la revolución química (1733).

Las disciplinas de la química han sido agrupadas por la clase de materia bajo estudio o el tipo de estudio realizado. Entre éstas se tienen la química inorgánica, que estudia la materia inorgánica; la química orgánica, que trata con la materia orgánica; la bioquímica, el estudio de substancias en organismos biológicos; la físico-química, comprende los aspectos energéticos de sistemas químicos a escalas macroscópicas, moleculares y atómicas; la química analítica, que analiza muestras de materia tratando de entender su composición y estructura. Otras ramas de la química han emergido en tiempos recientes, por ejemplo, la neuroquímica que estudia los aspectos químicos del cerebro.

Introducción

La ubicuidad de la química en las ciencias naturales hace que sea considerada como una de las ciencias básicas. La química es de gran importancia en muchos campos del conocimiento, como la ciencia de materiales, la biología, la farmacia, la medicina, la geología, la ingeniería y la astronomía, entre otros.

Los procesos naturales estudiados por la química involucran partículas fundamentales (electrones, protones y neutrones), partículas compuestas (núcleos atómicos, átomos y moléculas) o estructuras microscópicas como cristales y superficies.

Desde el punto de vista microscópico, las partículas involucradas en una reacción química pueden considerarse como un sistema cerrado que intercambia energía con su entorno. En procesos exotérmicos, el sistema libera energía a su entorno, mientras que un proceso endotérmico solamente puede ocurrir cuando el entorno aporta energía al sistema que reacciona. En la gran mayoría de las reacciones químicas hay flujo de energía entre el sistema y su campo de influencia, por lo cual podemos extender la definición de reacción química e involucrar la energía cinética (calor) como un reactivo o producto.

Aunque hay una gran variedad de ramas de la química, las principales divisiones son:

Es común que entre las comunidades académicas de químicos la química analítica no sea considerada entre las subdisciplinas principales de la química y sea vista más como parte de la tecnología química. Otro aspecto notable en esta clasificación es que la química inorgánica sea definida como "química no orgánica". Es de interés también que la Química Física es diferente de la Física Química. La diferencia es clara en inglés: "chemical physics" y "physical chemistry"; en español, ya que el adjetivo va al final, la equivalencia sería:

  • Química física Physical Chemistry
  • Física química Chemical physics

Usualmente los químicos son educados en términos de físico-química (Química Física) y los físicos trabajan problemas de la física química.

La gran importancia de los sistemas biológicos hace que en nuestros días gran parte del trabajo en química sea de naturaleza bioquímica. Entre los problemas más interesantes se encuentran, por ejemplo, el estudio del desdoblamiento de las proteínas y la relación entre secuencia, estructura y función de proteínas.

Si hay una partícula importante y representativa en la química es el electrón. Uno de los mayores logros de la química es haber llegado al entendimiento de la relación entre reactividad química y distribución electrónica de átomos, moléculas o sólidos. Los químicos han tomado los principios de la mecánica cuántica y sus soluciones fundamentales para sistemas de pocos electrones y han hecho aproximaciones matemáticas para sistemas más complejos. La idea de orbital atómico y molecular es una forma sistemática en la cual la formación de enlaces es entendible y es la sofisticación de los modelos iniciales de puntos de Lewis. La naturaleza cuántica del electrón hace que la formación de enlaces sea entendible físicamente y no se recurra a creencias como las que los químicos utilizaron antes de la aparición de la mecánica cuántica. Aun así, se obtuvo gran entendimiento a partir de la idea de puntos de Lewis.

Historia

Las primeras experiencias del hombre como químico se dieron con la utilización del fuego en la transformación de la materia, la obtención de hierro a partir del mineral y de vidrio a partir de arena son claros ejemplos. Poco a poco el hombre se dio cuenta de que otras sustancias también tienen este poder de transformación. Se dedicó un gran empeño en buscar una sustancia que transformara un metal en oro, lo que llevó a la creación de la alquimia. La acumulación de experiencias alquímicas jugó un papel vital en el futuro establecimiento de la química.

La química es una ciencia empírica, ya que estudia las cosas por medio del método científico, es decir, por medio de la observación, la cuantificación y, sobre todo, la experimentación. En su sentido más amplio, la química estudia las diversas sustancias que existen en nuestro planeta así como las reacciones que las transforman en otras sustancias. Por otra parte, la química estudia la estructura de las sustancias a su nivel molecular. Y por último, pero no menos importante, sus propiedades.

Subdisciplinas de la química

La química cubre un campo de estudios bastante amplio, por lo que en la práctica se estudia de cada tema de manera particular. Las seis principales y más estudiadas ramas de la química son:[cita requerida]

  • Química inorgánica: Síntesis y estudio de las propiedades eléctricas, magnéticas y ópticas de los compuestos formados por átomos que no sean de carbono (aunque con algunas excepciones). Trata especialmente los nuevos compuestos con metales de transición, los ácidos y las bases, entre otros compuestos.
  • Química orgánica: Síntesis y estudio de los compuestos que se basan en cadenas de carbono.
  • Bioquímica: estudia las reacciones químicas en los seres vivos, estudia el organismo y los seres vivos.
  • Química física: estudia los fundamentos y bases físicas de los sistemas y procesos químicos. En particular, son de interés para el químico físico los aspectos energéticos y dinámicos de tales sistemas y procesos. Entre sus áreas de estudio más importantes se incluyen la termodinámica química, la cinética química, la electroquímica, la mecánica estadística y la espectroscopía. Usualmente se la asocia también con la química cuántica y la química teórica.
  • Química industrial: Estudia los métodos de producción de reactivos químicos en cantidades elevadas, de la manera económicamente más beneficiosa. En la actualidad también intenta aunar sus intereses iniciales, con un bajo daño al medio ambiente.
  • Química analítica: estudia los métodos de detección (identificación) y cuantificación (determinación) de una sustancia en una muestra. Se subdivide en Cuantitativa y Cualitativa.

Además existen múltiples subdisciplinas, que por ser demasiado específicas, o multidisciplinares, se estudian individualmente:[cita requerida]

Los aportes de célebres autores

Hace aproximadamente cuatrocientos cincuenta y cinco años, sólo se conocían doce elementos. A medida que fueron descubriendo más elementos, los científicos se dieron cuenta de que todos guardaban un orden preciso. Cuando los colocaron en una tabla ordenados en filas y columnas, vieron que los elementos de una misma columna tenían propiedades similares. Pero también aparecían espacios vacíos en la tabla para los elementos aún desconocidos. Estos espacios huecos llevaron al científico ruso Dimitri Mendeleyev a pronosticar la existencia del germanio, de número atómico 32, así como su color, peso, densidad y punto de fusión. Su “predicción sobre otros elementos como - el galio y el escandio - también resultó muy atinada”, señala la obra Chemistry, libro de texto de química editado en 1995.

Campo de trabajo: el átomo

El origen de la teoría atómica se remonta a la escuela filosófica de los atomistas, en la Grecia antigua. Los fundamentos empíricos de la teoría atómica, de acuerdo con el método científico, se debe a un conjunto de trabajos hechos por Lavoiser, Proust, Richter, Dalton, Gay-Lussac y Avogadro entre muchos otros, hacia principios del siglo XIX.

Los átomos son la fracción más pequeña de materia estudiados por la química, están constituidos por diferentes partículas, cargadas eléctricamente, los electrones, de carga negativa; los protones, de carga positiva; los neutrones, que, como su nombre indica, son neutros (sin carga); todos ellos aportan masa para contribuir al peso.

Conceptos fundamentales

Partículas

Los átomos son las partes más pequeñas de un elemento (como el carbono, el hierro o el oxígeno). Todos los átomos de un mismo elemento tienen la misma estructura electrónica (responsable esta de la gran mayoría de las características químicas), pudiendo diferir en la cantidad de neutrones (isótopos). Las moléculas son las partes más pequeñas de una sustancia (como el azúcar), y se componen de átomos enlazados entre sí. Si tienen carga eléctrica, tanto átomos como moléculas se llaman iones: cationes si son positivos, aniones si son negativos.

El mol se usa como contador de unidades, como la docena (12) o el millar (1000), y equivale a . Se dice que 12 gramos de carbono o un gramo de hidrógeno o 56 gramos de hierro contienen aproximadamente un mol de átomos (la masa molar de un elemento está basada en la masa de un mol de dicho elemento). Se dice entonces que el mol es una unidad de cambio. El mol tiene relación directa con el número de Avogadro. El número de Avogadro fue estimado para el átomo de carbono por el Químico y Físico italiano Carlo Amedeo Avogadro Conde de Quarequa e di Cerreto. Este valor, expuesto anteriormente, equivale al número de partículas presentes en 1 mol de dicha sustancia. Veamos:

1 mol de glucosa equivale a moléculas de glucosa

1 mol de Uranio equivale a átomos de Uranio

Dentro de los átomos, podemos encontrar un núcleo atómico y uno o más electrones. Los electrones son muy importantes para las propiedades y las reacciones químicas. Dentro del núcleo se encuentran los neutrones y los protones. Los electrones se encuentran alrededor del núcleo. También se dice que es la unidad básica de la materia con características propias. Está formado por un núcleo donde se encuentran protones.

De los átomos a las moléculas

Los enlaces son las uniones entre átomos para formar moléculas. Siempre que existe una molécula es porque ésta es más estable que los átomos que la forman por separado. A la diferencia de energía entre estos dos estados se le denomina energía de enlace.

Generalmente, los átomos se combinan en proporciones fijas para dar moléculas. Por ejemplo, dos átomos de hidrógeno se combinan con uno de oxígeno para dar una molécula de agua. Esta proporción fija se conoce como estequiometría.

Orbitales

Diagrama espacial mostrando los orbitales atómicos hidrogenoides de momento angular del tipo d (l=2).

Artículos principales: Orbital atómico y orbital molecular

Para una descripción y comprensión detalladas de las reacciones químicas y de las propiedades físicas de las diferentes sustancias, es muy útil su descripción a través de orbitales, con ayuda de la química cuántica.

Un orbital atómico es una función matemática que describe la disposición de uno o dos electrones en un átomo. Un orbital molecular es análogo, pero para moléculas.

En la teoría del orbital molecular la formación del enlace covalente se debe a una combinación matemática de orbitales atómicos (funciones de onda) que forman orbitales moleculares, llamados así por que pertenecen a toda la molécula y no a un átomo individual. Así como un orbital atómico (sea híbrido o no) describe una región del espacio que rodea a un átomo donde es probable que se encuentre un electrón, un orbital molecular describe una región del espacio en una molécula donde es más factible que se hallen los electrones.

Al igual que un orbital atómico, un orbital molecular tiene un tamaño, una forma y una energía específicos. Por ejemplo, en la molécula de hidrógeno molecular se combinan dos orbitales atómicos uno s ocupados cada uno por un electrón. Hay dos formas en que puede presentarse la combinación de orbitales: aditiva y subtractiva. La combinación aditiva produce la formación de un orbital molecular que tiene menor energía y que tiene, aproximadamente, forma ovalada, mientras que la combinación subtractiva conduce a la formación de un orbital molecular con mayor energía y que genera un nodo entre los núcleos.

 

 

 
  CONTENIDOS
 
 
 
 
 
 
 
 
 
 
  APLICACIONES
Hoy habia 6 visitantes (8 clics a subpáginas) ¡Aqui en esta página!
Este sitio web fue creado de forma gratuita con PaginaWebGratis.es. ¿Quieres también tu sitio web propio?
Registrarse gratis