LAS GALAXIAS, SU CLASIFICACIÓN Y LA VIA LÁCTEA
GALAXIAS
NGC 4414, una típica galaxia espiral en la constelación Coma Berenices, cuyo diámetro es aproximadamente 17.000 parsecs y a una distancia aproximada de 20 millones de parsecs.
Una galaxia (de la raíz griega galakt-, "lácteo", una referencia a nuestra propia Vía Láctea) es un masivo sistema de estrellas, nubes de gas, planetas, polvo, materia oscura, y quizá energía oscura, unidos gravitacionalmente. La cantidad de estrellas que forman una galaxia es variable, desde las enanas, con 107, hasta las gigantes, con 1012 estrellas. Formando parte de una galaxia existen subestructuras como las nebulosas, los cúmulos estelares y los sistemas estelares múltiples.
Históricamente, las galaxias han sido clasificadas de acuerdo a su forma aparente (morfología visual, como se le suele nombrar). Una forma común es la de galaxia elíptica, que, como lo indica su nombre, tiene el perfil luminoso de una elipse. Las galaxias espirales tienen forma circular pero con estructura de brazos curvos envueltos en polvo. Galaxias con formas irregulares o inusuales se llaman galaxias irregulares, y son, típicamente, el resultado de perturbaciones provocadas por la atracción gravitacional de galaxias vecinas. Estas interacciones entre galaxias vecinas (que pueden provocar la fusión de galaxias) pueden inducir el intenso nacimiento de estrellas. Finalmente hay las galaxias pequeñas que carecen de una estructura coherente y a las que también se les llama galaxias irregulares.
Se estima que existen más de cien mil millones (1011) de galaxias en el universo observable. La mayoría de las galaxias tienen un diámetro entre cien y cien mil parsecs y están usualmente separadas por distancias del orden de un millón de parsecs. El espacio intergaláctico está compuesto por un tenue gas, cuya densidad media no supera un átomo por metro cúbico. La mayoría de las galaxias están dispuestas en una jerarquía de agregados, llamados cúmulos, que a su vez pueden formar agregados más grandes, llamados supercúmulos. Estas estructuras mayores están dispuestas en hojas o en filamentos rodeados de inmensas zonas de vacío en el universo.
Se especula que la materia oscura constituye el 90% de la masa en la mayoría de las galaxias. La naturaleza de este componente no está bien comprendida. Hay evidencias que sugieren la existencia de agujeros negros supermasivos en el núcleo de algunas galaxias. La Vía Láctea, que acoge a nuestro Sistema Solar, parece tener uno de estos objetos en su núcleo.
Historia
En 1610, Galileo Galilei usó un telescopio para estudiar la cinta lechosa en el cielo nocturno, llamada Vía Láctea, y descubrió que está compuesta por una inmensa cantidad de pequeñas estrellas. En el año 1755, Immanuel Kant especuló (correctamente) en un tratado, basado en un trabajo previo de Thomas Wright, que la Galaxia podía considerarse como un cuerpo rotante compuesto por una gran cantidad de estrellas, mantenido por la acción de la gravedad[cita requerida]. El sol sería una estrella más en este fastuoso concierto. El disco resultante sería observado como una cinta en el cielo, visto desde la perspectiva de formar parte de él. Kant también especuló sobre la posibilidad de que algunas de las nebulosas visibles en la noche podrían ser galaxias separadas[cita requerida].
M31 o Galaxia de Andrómeda, en la constelación de su mismo nombre.
Hacia el final del siglo XVIII, las galaxias no habian sido descubiertas. Charles Messier compiló un catálogo que contenía las 109 nebulosas más brillantes (objetos celestes de apariencia nebulosa), seguido más tarde por el catálogo, con quinientas nebulosas, elaborado por William Herschel. En 1845, Lord Rosse construyó un nuevo telescopio y éste le permitió distinguir la nebulosas elípticas de las circulares. Este telescopio permite ver de manera parcial para poder distinguir en algunas de estas nebulosas fuentes puntuales individuales de luz, confirmando de manera parcial las anteriores conjeturas de Kant.
En 1917, Hebert Curtis había observado la nova S Andromedae, en la nebulosa de Messier M31. Buscando en los registros fotográficos, encontró otras 11 novas y observó que, en promedio, estas novas eran 10 órdenes de magnitud más débiles que las ocurridas en nuestra galaxia. Como resultado de esta observación pudo predecir que dichas novas se debían encontrar a una distancia de 150.000 parsecs. Hebert se convirtió en un célebre defensor de la hipótesis de "universos isla", que sostenía que las nebulosas espirales eran realmente galaxias independientes.
En 1920 ocurrió el Gran Debate entre Harlow Shapley y Heber Curtis, en torno a la naturaleza de nuestra galaxia, las nebulosas espirales y la dimensión del universo. Para defender la afirmación de que M31 era una galaxia externa, Curtis argumentaba que las líneas obscuras observadas en dicha nebulosa eran similares a las nubes de polvo que se observan en nuestra galaxia. También argumentó el marcado corrimiento Doppler.
El tema fue zanjado de manera definitiva por Edwin Hubble en el año de 1923.[1] Usar un nuevo telescopio le permitió a Hubble resolver las partes exteriores de algunas nebulosas espirales como colecciones de estrellas individuales. Más aún, Hubble pudo identificar en esas estrellas algunas variables cefeidas y éstas le permitieron estimar la distancia a dichas nebulosas: estaban demasiado alejadas para ser parte de la Vía Láctea. En 1936, Hubble organizó un sistema de clasificación de galaxias, que todavía es usado en nuestros días: la secuencia de Hubble.
El primer intento de describir la forma que tiene la Vía Láctea fue llevado acabo por William Herschel en 1785, contando cuidadosamente el número de estrellas en distintas regiones del cielo. En 1920 Kapteyn, usando un refinamiento de la técnica empleada por Herschel, sugirió la imagen de una pequeña galaxia elipsoidal (15 kiloparsecs de diámetro), con el Sol cerca del centro. Con un método diferente, basado en la distribución de cúmulos globulares, realizado por Harlow Shapley, emergió una imagen radicalmente distinta: un disco plano con un diámetro aproximado de 70 kiloparecs y con un Sol alejado de su centro. Ninguno de los dos análisis tomó en cuenta la absorción de la luz y el polvo interestelar presentes en el plano galáctico. Robert Julius Trumpler tomó en cuenta estos efectos en 1930, estudiando cúmulos abiertos y produciendo la imagen que actualmente se acepta de nuestra galaxia: la Vía Láctea es una galaxia espiral con un diámetro aproximado de 30 kiloparsecs.
Velocidad de rotación: A observada, B predicha.
En 1944 Hendrick van de Hulst predijo que, debido a la presencia de hidrógeno interestelar, podría detectarse la emisión de microondas de 21 cm de longitud por parte de este gas. Esta radiación, detectada en 1951, ha permitido realizar mejoras en el estudio de la dinámica de galaxias, en tanto que no es bloqueada por la presencia de polvo. El efecto Doppler puede usarse para estudiar el movimiento de este gas en la galaxia. Con la mejora de los radio telescopios se han podido trazar nubes de Tgas de hidrógeno en otras galaxias.
En 1970, Vera Rubin hizo un estudio sobre la velocidad de rotación de las galaxias. El resultado de éste y otros estudios es que la masa conjunta de las estrellas, polvo y gases detectados en una galaxia es insuficiente para sostener la velocidad de rotación la misma. Para explicar esta discrepancia se ha postulado la existencia de materia obscura, inobservable, pero cuya masa contribuya con la gravedad necesaria para mantener las velocidades de rotación observadas.
A partir de 1990, con el telescopio espacial Hubble y otros telescopios espaciales, que cuentan con cámaras sensibles al infrarrojo, ultravioleta, rayos X y rayos gamma, el estudio de galaxias ha mejorado sustancialmente.
Nuestra galaxia, la Vía Láctea, pertenece a un Grupo Local de unas treinta galaxias dominadas por la Vía Láctea y la Galaxia de Andrómeda. Este cúmulo se encuentra en el límite de un súper conglomerado, que comprende casi cinco mil galaxias. El súper cúmulo, a su vez, pertenece a otra enorme concentración de galaxias reunidas en masas compactas.
Tipos de galaxias
Tipos de galaxias de acuerdo al esquema de clasificación de Hubble.
Las galaxias tienen tres configuraciones distintas: elípticas, espirales e irregulares. Una descripción algo más detallada, basada en su apariencia, es la provista por la secuencia de Hubble, propuesta en el año 1936. Este esquema, que sólo descansa en la apariencia visual, no toma en cuenta otros aspectos, tales como la tasa de formación de estrellas o la actividad del núcleo galáctico.
Galaxias elípticas
(E0-7): Galaxia con forma de elipse. Pueden ser nombradas desde E0 hasta E7, donde el número significa cuán ovalada es la elipse; así, E0 sería una forma de esfera y E7 de plato o disco. También se puede decir que el número indica su excentricidad multiplicada por 10.
Su apariencia muestra escasa estructura y, típicamente, tienen relativamente poca materia interestelar. En consecuencia, estas galaxias también tienen un escaso número de cúmulos abiertos, y la tasa de formación de estrellas es baja. Por el contrario, estas galaxias están dominadas por estrellas viejas, de larga evolución, que orbitan en torno al núcleo en direcciones aleatorias. En este sentido, tienen cierto parecido a los cúmulos globulares.
Las galaxias más grandes son gigantes elípticas. Se cree que la mayoría de las galaxias elípticas son el resultado de la coalición y fusión de galaxias. Éstas pueden alcanzar tamaños enormes y con frecuencia se las encuentra en conglomerados mayores de galaxias, cerca del núcleo.
Galaxias espirales
Las galaxias espirales son discos rotantes de estrellas y materia interestelar, con una protuberancia central compuesta principalmente por estrellas más viejas. A partir de esta protuberancia se extienden unos brazos en forma espiral, de brillo variable.
- (Sa-d): Galaxia de forma espiral con brazos de formación estelar. Las letras minúsculas indican cuán sueltos se encuentran los brazos, siendo "a" los brazos más apretados y "d" los más dispersos.
- Galaxias lenticulares (S0 y SB0): Forma de galaxia espiral sin brazos. E8 también se menciona como perteneciente a este tipo.
- Galaxias espirales barradas (SBa-d): Galaxia espiral con una banda central de estrellas. Las letras minúsculas tienen la misma interpretación que las galaxias espirales.
- Galaxias irregulares (Irr): Galaxia de forma espiral, pero que se encuentra deformada de algún modo.
Galaxia NGC 1300. Su espiral tiene 3.000 años luz de diámetro y no posee agujero negro en su centro. Imagen compuesta, tomada por el Telescopio espacial Hubble.
Galaxias irregulares
Una galaxia irregular es una galaxia que no encaja en ninguna clasificación de galaxias de la secuencia de Hubble. Son galaxias sin forma espiral ni elíptica.
Hay dos tipos de galaxias irregulares. Una galaxia Irr-I (Irr I) es una galaxia irregular que muestra alguna estructura pero no lo suficiente para encuadrarla claramente en la clasificación de las secuencia de Hubble. Una galaxia Irr-II (Irr II) es una galaxia irregular que no muestra ninguna estructura que pueda encuadrarla en la secuencia de Hubble.
Las galaxias enanas irregulares suelen etiquetarse como dI. Algunas galaxias irregulares son pequeñas galaxias espirales distorsionadas por la gravedad de un vecino mucho mayor.
Apenas un 5% de las galaxias brillantes reciben el nombre de galaxia irregular.
VIA LÁCTEA
.
La Vía Láctea es la galaxia en la que se encuentra el Sistema Solar y, por ende, la Tierra. Según las observaciones, posee una masa de 1012 masas solares y es una espiral barrada; con un diámetro medio de unos 100.000 años luz, se calcula que contiene entre 200 y 400 mil millones de estrellas. La distancia desde el Sol hasta el centro de la galaxia es de alrededor de 27.700 años luz (8,5 kpc, es decir, el 55 por ciento del radio total galáctico). La Vía Láctea forma parte de un conjunto de unas cuarenta galaxias llamado Grupo Local, y es la segunda más grande y brillante tras la Galaxia de Andrómeda (aunque puede ser la más masiva).
El nombre Vía Láctea proviene de la mitología griega, y en latín significa camino de leche. Ésa es, en efecto, la apariencia de la banda de luz que rodea el firmamento, y así lo afirma la mitología griega, explicando que se trata de leche derramada del pecho de la diosa Hera, esposa de Zeus, quien se negaba a amamantar al pequeño Hércules pues había sido fruto de una aventura. En una ocasión lo acercaron a su pecho mientras dormía, pero Hera despertó, lo retiró suavemente de su pezón y la leche se derramó por los cielos, dando forma a las brillantes constelaciones que admiramos en la noche. Sin embargo, ya en la Antigua Grecia se tiene conocimiento de un astrónomo que sugirió que aquel haz blanco en el cielo era en realidad un conglomerado de muchísimas estrellas. Se trata de Demócrito (460 a. C. - 370 a. C.), quien sostuvo que dichas estrellas eran demasiado tenues individualmente para ser reconocidas a simple vista. Su idea, no obstante, no halló respaldo, y tan sólo hacia el año 1609 de nuestra era, el astrónomo Galileo Galilei haría uso del telescopio para observar el cielo y constatar que Demócrito estaba en lo cierto pues, por donde quiera que mirase, aquél se encontraba lleno de estrellas.
El Futuro de la Via Láctea
Se piensa que la via láctea vá a chocar contra su vecina, Andromeda, en aproximadamente 5000 años. Las razones de esta creencia son: que la gravedad de andromeda y la via lactea es mas fuerte en este momento, esto hace que en vez de alegarse entre si, se acercan a una velocidad aproximada de 20km/s.Tambien surge la creencia de una nueva galaxia (Lacdromeda), la cual podria tener vida.La teoria que sostiene esta creencia es que, en el Universo, lo que nace junto, al final se une, y lo que nace separado, se alega aun mas.
Vista desde la Tierra
En la noche se aprecia como una borrosa banda de luz blanca alrededor de toda la esfera celeste. El fenómeno visual de la Vía Láctea se debe a estrellas y otros materiales que se hallan sobre el plano de la galaxia.
La Vía Láctea aparece más brillante en la dirección de la constelación de Sagitario, hacia el centro de la galaxia.
La Vía Láctea vista de desde el Valle de la Muerte, en fotografía panorámica.
Partes
Diagrama de la estructura galáctica.
La galaxia se divide en tres partes bien diferenciadas:
- halo
- halo exterior
- halo interior
- disco
- disco delgado
- disco grueso
- disco extremo
- bulbo
Halo
El halo es una estructura esferoidal que envuelve la galaxia. En el halo la concentración de estrellas es muy baja y apenas tiene nubes de gas, por lo que carece de regiones con formación estelar. En cambio, es en el halo donde se encuentran la mayor parte de los cúmulos globulares. Estas formaciones antiguas son reliquias de la formación galáctica. Estas agrupaciones de estrellas se debieron formar cuando la galaxia era aún una gran nube de gas que colapsaba y se iba aplanando cada vez más. Otra característica del halo es la presencia de gran cantidad de materia oscura. Su existencia se dedujo a partir de anomalías en la rotación galáctica. Los objetos contenidos en el halo rotan con una componente perpendicular al plano muy fuerte, cruzando en muchos casos el disco galáctico. De hecho, es posible encontrar estrellas u otros cuerpos del halo en el disco. Su procedencia se delata cuando se analiza su velocidad y trayectoria, así como su metalicidad. Y es que los cuerpos del halo presentan una componente perpendicular al plano muy acusada, además del hecho de que se trata de cuerpos que se formaron antes que los del disco. Sus órbitas los llevan, pues, a cruzar periódicamente el disco. También es muy probable que una estrella de población II (pobre en metales) pertenezca al halo, pues éstas son más antiguas que las de población I (ricas en metales) y el halo, como ya se ha dicho, es una estructura antigua.
Disco
El disco se compone principalmente de estrellas jóvenes de población I. Es la parte de la galaxia que más gas contiene y es en él donde aún se dan procesos de formación estelar. Lo más característico del disco son los brazos espirales, que son cuatro: dos brazos principales -Escudo-Centauro y Perseo, así como dos secundarios -Sagitario y Escuadra- (en vez de cuatro brazos similares entre sí, como se pensaba antes).[2] Nuestro Sistema Solar se encuentra en el brazo Orión o Local, que forma parte del brazo espiral de Sagitario, de allí su nombre de "Local". Estas formaciones son regiones densas donde se compacta el gas y se da la formación de estrellas. Los brazos son, en realidad, ondas de densidad que se desplazan independientemente de las estrellas contenidas en la galaxia. El brillo de los brazos es mayor que el resto de las zonas, porque es allí donde se encuentran los gigantes azules (estrellas de tipo O,B), que son las únicas que pueden ionizar grandes extensiones de gas. Estas estrellas de corta vida nacen y mueren en el brazo espiral, convirtiéndose así en excelentes marcadores de su posición. Otros trazadores de los brazos espirales son las regiones HII (nubes de hidrógeno ionizado), originadas precisamente por esos gigantes azules. Estas nubes vuelven a emitir, en el rango de la luz visible, la energía captada en el ultravioleta o en otras frecuencias más cortas. Son altamente energéticas, pues han sido ionizadas por las potentes gigantes azules, que barren extensas áreas con sus vientos estelares.
Las estrellas de vida más larga como el Sol ya no sirven como marcadores, ya que tienen tiempo a lo largo de su vida de entrar y salir repetidas veces en los diferentes brazos espirales de la galaxia. Estas estrellas podrán encontrarse también fuera de los brazos.
Así como la galaxia se compone de dos partes según su grosor, halo y disco, el disco también: disco delgado y disco grueso. Se cree que el disco grueso es el remanente de un segundo proceso de colapso y aplanamiento de la galaxia. Del mismo modo que el halo es el remanente del colapso inicial, el disco grueso lo sería de una segunda fase de colapso.
El disco está unido al bulbo galáctico por una barra de radio 3,9 kiloparsecs,[3] la cual a su vez está ceñida por un anillo de radio 5 kiloparsecs, que concentra, además de una gran cantidad del hidrógeno molecular de la galaxia, una gran actividad de formación estelar. Dicho anillo es la estructura más notable de nuestra galaxia, y visto desde otras galaxias exteriores sería su zona más prominente.[4] De este anillo emergen los brazos espirales.
Se cree que posiblemente nuestra galaxia tiene entre 4 mil millones y 8 mil millones de masas solares de hidrógeno neutro, además de la mitad de ésa masa en la forma de hidrógeno molecular. Mientras que el primero llega más allá del espacio ocupado por las estrellas -pero la región central apenas tiene gas en ésa forma-, gran parte del segundo está concentrado en el anillo mencionado antes, y -excepto en la región más interna de la Vía Láctea- la densidad de hidrógeno molecular en la región central de la galaxia también es baja[5]
Estudios recientes muestran que nuestra galaxia es atípica por no haber sufrido en los últimos 10 mil millones de años ninguna fusión importante con otra, en base a sus bajos momento angular, metalicidad, tamaño, y número de estrellas, habiendo formado estrellas de manera bastante constante y tenido una evolución tranquila, a diferencia de lo que ha sucedido con numerosas otras galaxias espirales cómo Andrómeda, las cuales han adquirido su tamaño y masa actuales debido a la absorción de numerosas galaxias menores. Ésto también significa que una colisión entre dos galaxias espirales puede no dar siempre lugar a una galaxia elíptica, sino a una galaxia espiral mayor.[6] [7]
Bulbo
El bulbo o núcleo galáctico se sitúa en el centro. Es la zona de la galaxia con mayor densidad de estrellas. Sin embargo, a nivel local se pueden encontrar algunos cúmulos globulares con densidades superiores. El bulbo tiene una forma esferoidal achatada y gira como un sólido rígido. También al parecer, en nuestro centro galáctico, hay un gran agujero negro de unas 2,6 millones de masas solares que los astrónomos denominaron Sagittarius A, o Sagitario A*. Su detección fue posible a partir de la observación de un grupo de estrellas que giraban en torno a un punto oscuro a más de 1.500 km/s.
Un estudio reciente muestra que nuestra galaxia es un 50% más masiva de lo que se creía anteriormente.[8]
Galaxias satélite
Además de los al menos 150 cúmulos globulares conocidos,[9] nuestra galaxia cuenta con cierto número de galaxias satélite. Las dos mayores con diferencia son las Nubes de Magallanes, y el resto son galaxias elípticas enanas mucho menores, aunque recientemente se ha sugerido que las perturbaciones observadas en el gas situado en la periferia de la Vía Láctea pueden estar causadas por la gravedad de una galaxia de masa similar a la de la Gran Nube de Magallanes e invisible desde nuestra posición en la galaxia.[10]
Algunas de las galaxias compañeras -cómo por ejemplo la Galaxia Elíptica Enana de Sagitario- están tan cerca a ella que están siendo despedazadas y absorbidas por nuestra galaxia.
Etimología de la palabra en la mitología griega
Otra recreación artística de la Vía Láctea.
Se cuenta que el dios griego Zeus, que era infiel a su esposa, tuvo un hijo llamado Heracles (Hércules, para los romanos) de su unión con Alcmena. Al enterarse, Hera hizo que Alcmena llevara en el vientre a Heracles por 10 meses, y trató de deshacerse de éste mandando dos serpientes para que mataran al bebé cuando tenía ocho meses. Sin embargo, Heracles pudo librarse fácilmente de ellas estrangulándolas con sus pequeñas manos. Heracles resultó ser el favorito de Zeus. Sin embargo, el Oráculo decía que Heracles sólo sería un héroe, puesto que era mortal. Para ser un dios inmortal debía mamar de Hera, pero ella no quería: sentía ira y celos en su contra.
Una vez que llega la historia hasta este punto, las versiones son distintas.
Una de ellas dice que Hermes, el mensajero de los dioses, puso a Heracles en el seno de Hera, mientras ella dormía, para que mamara la leche divina pero, al despertar y darse cuenta, lo separó bruscamente y se derramó la leche, formando la Vía Láctea.
Otra dice que Atenea, la diosa de la sabiduría, convenció a Hera de que Heracles mamara de ella, ya que era un niño muy lindo, pero resulta que Heracles succionó la leche con tal violencia, que lastimó a Hera, haciéndola derramar la leche.
NUESTRO SISTEMA SOLAR
Esquema del sistema solar que incluye los planetas y planetas enanos. Los tamaños se encuentran a escala, las órbitas no.
El Sistema Solar es un sistema planetario de la galaxia Vía Láctea que se encuentra en uno de los brazos de ésta, conocido como el Brazo de Orión. Según las últimas estimaciones, el Sistema Solar se encuentra a unos 28 mil años-luz del centro de la Vía Láctea.[1]
Está formado por una única estrella llamada Sol, que da nombre a este Sistema; más ocho planetas que orbitan alrededor de la estrella: Mercurio, Venus, la Tierra, Marte, Júpiter, Saturno, Urano y Neptuno; más un conjunto de otros cuerpos menores: planetas enanos (Plutón, Eris, Makemake, Haumea, Sedna y Ceres), asteroides, lunas, cometas... así como el espacio interplanetario comprendido entre ellos.
Características generales
El Sol.
Planetas del Sistema Solar (tamaño a escala).
Los planetas y los asteroides orbitan alrededor del Sol, en la misma dirección siguiendo órbitas elípticas en sentido antihorario si se observa desde encima del polo norte del Sol. El plano aproximado en el que giran todos estos se denomina eclíptica. Algunos objetos orbitan con un grado de inclinación considerable, como Plutón con una inclinación con respecto al eje de la eclíptica de 18º, así como una parte importante de los objetos del cinturón de Kuiper. Según sus características, y avanzando del interior al exterior, los cuerpos que forman el Sistema Solar se clasifican en:
- Sol. Una estrella de tipo espectral G2 que contiene más del 99% de la masa del sistema. Con un diámetro de 1.400.000 km, se compone, de un 75% de hidrógeno, un 20% de helio y el 5% de oxígeno, carbono, hierro y otros elementos.
- Planetas. Divididos en planetas interiores (también llamados terrestres o telúricos) y planetas exteriores o gigantes. Entre estos últimos Júpiter y Saturno se denominan gigantes gaseosos mientras que Urano y Neptuno suelen nombrarse como gigantes helados. Todos los planetas gigantes tienen a su alrededor anillos.
En el año 2006, una convención de astronomía en Europa declaró a Plutón como planetoide debido a su tamaño, quitándolo de la lista de planetas formales.
- Planetas enanos. Esta nueva categoría inferior a planeta la creó la Unión Astronómica Internacional en agosto de 2006. Se trata de cuerpos cuya masa les permite tener forma esférica, pero no es la suficiente para haber atraído o expulsado a todos los cuerpos a su alrededor. Cuerpos como Plutón (hasta 2006 considerado noveno planeta del Sistema Solar), Ceres, Makemake y Eris están dentro de esta categoría.
- Satélites. Cuerpos mayores orbitando los planetas, algunos de gran tamaño, como la Luna, en la Tierra, Ganímedes, en Júpiter o Titán, en Saturno.
- Asteroides. Cuerpos menores concentrados mayoritariamente en el cinturón de asteroides entre las órbitas de Marte y Júpiter, y otra más allá de Neptuno. Su escasa masa no les permite tener forma regular.
- Objetos del cinturón de Kuiper. Objetos helados exteriores en órbitas estables, los mayores de los cuales serían Sedna y Quaoar.
- Cometas. Objetos helados pequeños provenientes de la Nube de Oort.
El espacio interplanetario en torno al Sol contiene material disperso proveniente de la evaporación de cometas y del escape de material proveniente de los diferentes cuerpos masivos. El polvo interplanetario (especie de polvo interestelar) está compuesto de partículas microscópicas sólidas. El gas interplanetario es un tenue flujo de gas y partículas cargadas formando un plasma que es expulsado por el Sol en el viento solar. El límite exterior del Sistema Solar se define a través de la región de interacción entre el viento solar y el medio interestelar originado de la interacción con otras estrellas. La región de interacción entre ambos vientos se denomina heliopausa y determina los límites de influencia del Sol. La heliopausa puede encontrarse a unas 100 UA (15.000 millones de kilómetros del Sol).
Los diferentes sistemas planetarios observados alrededor de otras estrellas parecen marcadamente diferentes al Sistema Solar, si bien existen problemas observacionales para detectar la presencia de planetas de baja masa en otras estrellas. Por lo tanto, no parece posible determinar hasta qué punto el Sistema Solar es característico o atípico entre los sistemas planetarios del Universo.
Estructura del Sistema Solar
Las órbitas de los planetas mayores se encuentran ordenadas a distancias del Sol crecientes de modo que la distancia de cada planeta es aproximadamente el doble que la del planeta inmediatamente anterior. Esta relación viene expresada matemáticamente a través de la ley de Titius-Bode, una fórmula que resume la posición de los semiejes mayores de los planetas en Unidades Astronómicas. En su forma más simple se escribe:
donde = 0, 1, 2, 4, 8, 16, 32, 64, 128.
(Aunque puede llegar a ser complicada)
En esta formulación la órbita de Mercurio se corresponde con (k=0) y semieje mayor 0,4 UA, y la órbita de Marte (k=4) se encuentra en 1,6 UA. En realidad las órbitas se encuentran en 0,38 y 1,52 UA. Ceres, el mayor asteroide, se encuentra en la posición k=8. Esta ley no se ajusta a todos los planetas (Neptuno está mucho más cerca de lo que se predice por esta ley). Por el momento no hay ninguna explicación de la ley de Titius-Bode y muchos científicos consideran que se trata tan sólo de una coincidencia.
La dimensión astronómica de las distancias en el espacio
Para tener una noción de la dimensión astronómica de las distancias en el espacio, es interesante hacer unos cálculos y hacernos de un modelo que nos permita tener una percepción más clara de lo que está en juego. Imaginemos, por ejemplo, un modelo reducido en el que el Sol estaría representado por una pelota de fútbol (de 220 mm de diámetro). A esa escala, la Tierra estaría a 23,6 m de distancia y sería una esfera con apenas 2 mm de diámetro (la Luna estaría a unos 5 cm de la tierra y tendría un diámetro de unos 0,5 mm) . Júpiter y Saturno serían bolitas con cerca de 2 cm de diámetro, a 123 y a 226 m del Sol respectivamente. Plutón estaría a 931 m del Sol, con cerca de 0,3 mm de diámetro. En cuanto la estrella más próxima (Próxima Centauri) estaría a 6.332 km del Sol, y la estrella Sirio a 13.150 km.
Si se tardase 1 h y cuarto en ir de la Tierra a la Luna (a unos 257.000 km/h), se tardaría unas 3 semanas (terrestres) en ir de la Tierra al Sol, unos 3 meses en ir a Júpiter, 7 meses a Saturno y unos 2 años y medio en llegar a Plutón y dejar nuestro sistema solar. A partir de ahí, a esa velocidad, tendríamos que esperar unos 17.600 años hasta llegar a la estrella más próxima, y 35.000 años hasta llegar a Sirio.
Objetos principales del Sistema Solar
El Sol
Planetas con corteza sólida
Planetas de composición gaseosa
Estrella central
El Sol es la estrella del sistema planetario en el que se encuentra la Tierra; por tanto, es la más cercana a la Tierra y el astro con mayor brillo aparente. Su presencia o su ausencia en el cielo determinan, respectivamente, el día y la noche. La energía radiada por el Sol es aprovechada por los seres fotosintéticos, que constituyen la base de la cadena trófica, siendo así la principal fuente de energía de la vida. También aporta la energía que mantiene en funcionamiento los procesos climáticos. El Sol es una estrella que se encuentra en la fase denominada secuencia principal, con un tipo espectral G2, que se formó hace unos 5000 millones de años y permanecerá en la secuencia principal aproximadamente otros 5000 millones de años. El Sol, junto con la Tierra y todos los cuerpos celestes que orbitan a su alrededor, forman el Sistema Solar.
A pesar de ser una estrella mediana, es la única cuya forma se puede apreciar a simple vista, con un diámetro angular de 32' 35" de arco en el perihelio y 31' 31" en el afelio, lo que da un diámetro medio de 32' 03". Por una extraña coincidencia, la combinación de tamaños y distancias del Sol y la Luna respecto de la tierra son tales que se ven, aproximadamente, con el mismo tamaño aparente en el cielo. Esto permite una amplia gama de eclipses solares distintos (totales, anulares o parciales).
Planetas
El 24 de agosto de 2006, en Praga, en la XXVI Asamblea General la Unión Astronómica Internacional (UAI), se excluyó a Plutón como planeta del Sistema Solar. Tras una larga controversia sobre esta resolución, se tomó la decisión por unanimidad. Con esto se reconoce el error de haber otorgado la categoría de planeta a Plutón en 1930, año de su descubrimiento. Desde ese día el Sistema Solar queda compuesto por 8 planetas.
Los 8 planetas del Sistema Solar, de acuerdo con su cercanía al Sol, son: Mercurio, Venus, Tierra, Marte, Júpiter, Saturno, Urano y Neptuno. Los planetas son astros que describen trayectorias llamadas órbitas al girar alrededor del Sol, tienen suficiente masa para que su gravedad supere las fuerzas del cuerpo rígido, de manera que asuman una forma en equilibrio hidrostático (prácticamente esférica) y han limpiado la vecindad de su órbita de planetesimales.
A Saturno, Júpiter, Urano y Neptuno los científicos los han denominado planetas gaseosos por contener en sus atmósferas gases como el helio, el hidrógeno y el metano, sin saber a ciencia cierta la estructura de su superficie.
Características principales de los planetas del Sistema Solar
Planeta
|
Diámetro
ecuatorial
|
Masa
|
Radio
orbital(UA)
|
Periodo orbital
(años)
|
Periodo
de rotación
(días)
|
Satélites naturales
|
Imagen
|
Mercurio
|
0,382
|
0,06
|
0,38
|
0,241
|
58,6
|
0
|
|
Venus
|
0,949
|
0,82
|
0,72
|
0,615
|
243
|
0
|
|
Tierra*
|
1,00
|
1,00
|
1,00
|
1,00
|
1,00
|
1
|
|
Marte
|
0,53
|
0,11
|
1,52
|
1,88
|
1,03
|
2
|
|
Júpiter
|
11,2
|
318
|
5,20
|
11,86
|
0,414
|
63
|
|
Saturno
|
9,41
|
95
|
9,54
|
29,46
|
0,426
|
61
|
|
Urano
|
3,98
|
14,6
|
19,22
|
84,01
|
0,718
|
27
|
|
Neptuno
|
3,81
|
17,2
|
30,06
|
164,79
|
0,671
|
13
|
|
* Ver Tierra para los valores absolutos.
|
Planetas enanos
Poco después de su descubrimiento en 1930, Plutón fue clasificado como un planeta por la Unión Astronómica Internacional (UAI). Sin embargo, basándose en descubrimientos posteriores, se abrió un debate por algunos, con objeto de reconsiderar dicha decisión. Finalmente, el 24 de agosto de 2006 la UAI decidió que el número de planetas no se ampliará a 12, como se propuso en la reunión que mantuvieron sus miembros en Praga, sino que debía reducirse de 9 a 8. El gran perjudicado de este nuevo orden cósmico fue, nuevamente, el polémico Plutón, cuyo pequeño tamaño y su evolución dinámica en el Sistema Solar llevó a los miembros de la UAI a excluirlo definitivamente de su nueva definición de planeta.
En dicha reunión de la UAI se creó una nueva clase de planeta, los planetas enanos, que a diferencia de los planetas, no han limpiado la vecindad de su órbita. Los cinco planetas enanos del sistema solar ordenados por proximidad al Sol son Ceres, Plutón, Makemake, Haumea y Eris.
Características principales de los planetas enanos del Sistema Solar
Los datos se expresan en relación a la Tierra.
Planeta enano
|
Diámetro
medio
|
Diámetro
Km
|
Masa
|
Radio
orbital(UA)
|
Periodo orbital
(años)
|
Periodo
de rotación
(días)
|
Satélites naturales
|
Imagen
|
Ceres
|
0,074
|
952,4
|
0,00016
|
2,766
|
4,599
|
0,3781
|
0
|
|
Plutón
|
0,22
|
2302
|
0,82
|
39,482
|
247,92
|
-6,3872
|
3
|
|
Haumea
|
0,09
|
|
0,0007
|
43,335
|
285,4
|
0,167
|
2
|
|
Makemake
|
0,12
|
|
0,0007
|
45,792
|
309,9
|
?
|
0
|
|
Eris
|
0,19
|
|
0,0028
|
67,668
|
557
|
?
|
1
|
|
Cuerpos menores
Entre los cuerpos menores, los planetas menores son cuerpos con masa suficiente para redondear sus superficies. Antes del descubrimiento de Caronte y los primeros objetos transneptunianos el término "planeta menor" era un sinónimo de asteroide. Sin embargo, el término asteroide suele reservarse para los cuerpos rocosos pequeños del Sistema Solar interior. La mayoría de los objetos transneptunianos son cuerpos helados, como cometas, aunque la mayoría de los que es posible descubrir a esas distancias son mucho mayores que los cometas.
Los mayores objetos transneptunianos son mucho mayores que los mayores asteroides. Los satélites naturales de los planetas mayores también tienen un amplio rango de tamaños y superficies, siendo los mayores de ellos mucho mayores que los asteroides mayores.
La siguiente tabla muestra las características más importantes de los principales cuerpos menores del Sistema Solar algunos de los cuales en un futuro podrían ser "ascendidos" al rango de planeta enano, como pasó con Makemake y Haumea. Todas las características se dan con respecto a la Tierra.
Planetas menores o planetoides
Planetas menores
|
Diámetro
ecuatorial
|
Masa
|
Radio orbital
(UA)
|
Periodo orbital
(años)
|
Periodo
de rotación
(días)
|
Imagen
|
(90482) Orcus
|
0,066 - 0,148
|
0,000 10 - 0,001 17
|
39,47
|
248
|
?
|
|
(28978) Ixión
|
~0,083
|
0,000 10 - 0,000 21
|
39,49
|
248
|
?
|
|
(55636) 2002 TX300
|
0,0745
|
?
|
43,102
|
283
|
?
|
|
(20000) Varuna
|
0,066 - 0,097
|
0,000 05 - 0,000 33
|
43,129
|
283
|
0,132 ó 0,264
|
|
(50000) Quaoar
|
0,078 - 0,106
|
0,000 17 - 0,000 44
|
43,376
|
285
|
?
|
|
(90377) Sedna
|
0,093 - 0,141
|
0,000 14 - 0,001 02
|
502,040
|
11500
|
20
|
|
Formación y evolución del Sistema Solar
Se da generalmente como precisa la formación del Sistema Solar hace unos 4.500 millones de años a partir de una nube de gas y de polvo que formó la estrella central y un disco circumestelar en el que, por la unión de las partículas más pequeñas, primero se habrían ido formando, poco a poco, partículas más grandes, posteriormente planetesimales, y luego protoplanetas hasta llegar a los actuales planetas.
LAS ESTRELLAS Y LAS CONSTELACIONES
Constelación
Planisferio francés del siglo XVII que muestra las constelaciones reconocidas en aquella época
Representación de la constelación de Orión en el libro Uranometria de Johann Bayer
Una constelación, en astronomía, es una agrupación convencional de estrellas cuya posición en el cielo nocturno es aparentemente tan cercana que los astrónomos de las civilizaciones antiguas decidieron vincularlas mediante líneas imaginarias, ideando así figuras sobre la bóveda celeste. En la inmensidad del espacio, en cambio, las estrellas de una constelación no están, necesariamente, localmente asociadas; incluso pueden encontrarse a cientos de años luz unas de otras. Además, dichos grupos son completamente arbitrarios, ya que distintas culturas han ideado constelaciones diferentes, incluso vinculando las mismas estrellas. Aun así, algunos conjuntos tienden a reaparecer, ya sea por su configuración tan peculiar —como es el caso de Scorpius, el escorpión—, su magnitud aparente (el brillo) de sus estrellas o debido al paso recurrente de algunos cuerpos celestes —los planetas y la Luna— por sus inmediaciones.En el pueblo de MeRii hay un observatorio antigua donde se pueden ver las constelaciones.
Algunas constelaciones son muy antiguas, pues fueron ideadas hace muchos siglos por los pueblos que habitaban las regiones del Medio Oriente y el Mediterráneo. Otras, en cambio, tuvieron su origen en tiempos más recientes, cuando los viajes a otros lugares, hasta entonces desconocidos, llevaron a los navegantes europeos a explorar los mares del sur (aunque los pueblos que habitaban las regiones australes ya habían nombrado sus propias constelaciones).
Se acostumbra a separar las constelaciones en dos grupos, dependiendo el hemisferio celeste dónde se encuentren:
- constelaciones septentrionales, las ubicadas al norte del ecuador celeste
- constelaciones australes, al sur.
A partir de 1928, la Unión Astronómica Internacional (UAI) decidió reagrupar oficialmente la esfera celeste en 88 constelaciones con límites precisos, tal que todo punto en el cielo quedara dentro de los límites de una figura. Antes de dicho año, eran reconocidas otras constelaciones menores que luego cayeron en el olvido; muchas, ya no se recuerdan. El trabajo de delimitación definitiva de las constelaciones fue llevado a cabo fundamentalmente por el astrónomo belga Eugène Joseph Delporte y publicado por la UAI en 1930.
Historia de las constelaciones
Constelaciones antiguas
Placa tallada en el templo de Hator de Dendera (Egipto), alrededor del 50 AC, que representa las constelaciones zodiacales
Debido al tiempo transcurrido y a la falta de registros históricos, es difícil conocer el origen preciso de las constelaciones más antiguas del mundo occidental. Tal parece que Leo (el león), Taurus (el toro), y Scorpius (el escorpión), existían desde antiguo en la cultura de Mesopotamia, unos 4000 años antes de la era cristiana, aunque no recibían esos nombres necesariamente.
Se cree que el interés de estos antiguos pueblos por la disposición de las estrellas tuvo motivos fundamentalmente prácticos, usualmente con propósitos agrícolas, de viaje y religiosos: como ayuda para medir el tiempo y las estaciones y para servir de orientación a navegantes y mercaderes cuando realizaban travesías durante la noche, ya fuese por mar o por el desierto. Así, imaginando figuras con las cuales relacionar los grupos de estrellas (y creando leyendas e historias de lo que representaban —ver mitología, astrología—) les sería más fácil y seguro recordar las rutas a seguir.
De las 88 constelaciones adoptadas por la UAI, casi la mitad provienen de la imaginación de los astrónomos griegos. Homero menciona a Orión en la Odisea (obra que data del siglo IX a. C.). En el Antiguo Egipto era conocido como Sahu mil años antes. El Zodíaco, dividido en doce constelaciones, surgió en Babilonia durante el reinado de Nabucodonosor II siglo VI a. C., vinculado a las doce lunaciones anuales. Lo adoptará la cultura griega, dándole a las constelaciones los actuales nombres.
La compilación exhaustiva de constelaciones más antigua conocida se remonta a Claudio Ptolomeo, quien en el siglo II a. C. presentó un catálogo de 1022 estrellas, agrupadas en 48 constelaciones, en su obra Almagesto; la obra fue escrita en griego, con el título Ἡ μεγάλη Σύνταξις (He Megále Síntaxis: ‘el gran tratado’). Dicho trabajo, que será la base de muchos resumenes astronómicos occidentales posteriores, hasta finales de la Edad Media, sólo incluía las estrellas visibles desde Alejandría, lugar desde donde Ptolomeo llevó a cabo sus observaciones.
Constelaciones chinas
Carta estelar del libro de Dunhuang, escrito alrededor del año 700. Las constelaciones corresponden a Ursa Major, Capricornus y Sagittarius
Las constelaciones chinas son uno de los agrupamientos estelares más antiguos del mundo. Éstas son muy diferentes de las modernas constelaciones reconocidas por la UAI (que se basan en la astronomía griega); esto se debe principalmente a que el desarrollo de la astronomía china fue independiente, aunque paralelo a la griega.
Los astrónomos chinos dividieron el cielo en 31 regiones, llamados 3 recintos (三垣 sān yuán) y 28 mansiones (二十八宿 èrshíbā xiù). Los tres recintos ocupan la zona cercana al polo norte, por lo que en las latitudes altas se pueden ver durante todo el año, mientras las veintiocho mansiones ocupan la zona del zodíaco, por lo que pueden ser estimados como el equivalente a las doce constelaciones zodiacales occidentales. Contrariamente a la astronomía occidental, las veintiocho mansiones no reflejan el movimiento (aparente) del Sol sino el movimiento de la Luna en su recorrido mensual alrededor de la Tierra.
Los tres Recintos y las 28 Mansiones se dividen además en 283 asterismos. Cada estrella se asigna a uno de los asterismos e incluso algunos de ellos sólo poseen una estrella. Tradicionalmente, una estrella lleva el nombre de su asterismo combinado con un número.
El cielo alrededor del polo sur celeste se desconocía en la antigua China. Por lo tanto, no se incluyó como parte de los tres recintos y las 28 mansiones. Sin embargo, a finales de la Dinastía Ming, Xu Guangqi introdujo otros 23 asterismos basado en las cartas estelares occidentales.
Constelaciones hindúes
Las constelaciones de la astronomía hindú se denominan nakshatra (नक्षत्र) o mansión lunar, que correponden a cada una de las 27 divisiones del cielo, identificadas por la(s) estrella(s) más destacada(s) dentro de las mismas, por las cuales pasa la Luna durante su ciclo mensual. Por lo tanto, cada uno de ellos representa una división de la eclíptica similar a la del zodíaco occidental (13° 20' en lugar de los 30° para cada signo del zodiaco). El periodo orbital de la Luna es de 27.3 días, por lo que la Luna tarda aproximadamente un día para pasar a través de cada nakshatra.
El punto de partida para la nakshatras es el punto de la eclíptica directamente opuesto a la estrella Spica llamdo Chitrā (que correpondería aproximadamente al comienzo de Aries). La eclíptica se divide en cada uno de los nakshatras hacia el este a partir de este punto.
La lista de Nakshatras se encuentra en los textos védicos, y también en el Shatapatha Brahmana. El primer texto de astronomía que enumera es el Vedanga Jyotisha de Lagadha. En la mitología hindú los Nakshastras fueron inventados por Daksha, y se personifican como las hijas de la deidad y las esposas de Chandra, el dios de la luna.
Cada uno de los nakshatras se rige por uno de los señores de los nueve graha en la siguiente secuencia:
Constelaciones incas
La constelación oscura del "Emú en el cielo", parte de la mitología aborigen australiana
Los astrónomos de la civilización Inca identificaron diversas áreas oscuras de la Vía Láctea como animales, y los asociaron con la temporada de lluvias; debido a esto se les conoce como «constelaciones oscuras». Estas áreas son las que comúnmente se denominan nebulosas oscuras.
Sin duda alguna, la cultura Incas es la más representantiva de América del Sur. Es precisamente en Cuzco, en donde muchos investigadores han encontrado documentos de colonizadores españoles que describen el Templo del Sol, del cual irradiaban cuarenta y un ejes llamados ceques, cuya disposición implicaba lineamientos geománticos o astronómicos, que definían el valle en 328 huacas las cuales cumplían funciones rituales y políticas.
Los Incas conocían la revolución sinódica de los planetas, e igualmente construyeron un calendario lunar para las fiestas religiosas y uno solar para la agricultura. Para tal propósito utilizaron elementos como montículos alrededor de los pueblos para realizar astronomía observacional.
El calendario consistía en un año solar de 365 días, repartidos en 12 meses de 30 días y con 5 días intercalados. Se sabe que el calendario era determinado observando al sol y a la luna. Para fijar las fechas exactas del año y meses, Pachacútec dispuso la edificación de 12 torres o pilares localizados al este de la llacta del Cuzco, llamados sucangas.
Los Incas daban mucha importancia a las constelaciones y estaban muy interesados en la medición del tiempo para fines agrícolas. Poseían sus propias constelaciones entre las cuales, se destacan la Cruz del Sur y el Centauro. Para ellos las Vía Láctea era oscurecida por sacos de carbón. La astronomía jugó un papel muy importante para la construcción de sus ciudades.
Los Chibchas conocían la constelación de Orión y reconocían la relación entre la salida heliacal de Sirio con el comienzo de la temporada de lluvias.
Otra cultura aborigen que reconocía figuras oscuras en el cielo eran los australianos, especialmente aquellos que vivían en el centro del continente. Una de sus figuras mas representativas es "El Emu en el cielo", que abarcaba desde el Escorpión hasta la Cruz del Sur.
El Zodíaco
El Zodíaco es una banda de cielo por donde, aparentemente, transitan el Sol y los planetas. Durante el siglo V a. C., dicha región fue dividida en 12 partes iguales (una por cada mes del año) a las cuales dieron el nombre de la constelación más próxima (grupos que muy bien podrían haber existido antes de la invención del Zodíaco propiamente). Estas constelaciones fueron las siguientes. Se ofrecen, primeramente, sus nombres en latín, que son los que se usan comúnmente, luego los nombres en español.
Nro
|
Nombre en latín
|
Nombre en español
|
01
|
Aries
|
Aries, el carnero
|
02
|
Taurus
|
Tauro, el toro
|
03
|
Gemini
|
Géminis, los gemelos
|
04
|
Cancer
|
Cáncer, el cangrejo
|
05
|
Leo
|
Leo, el león
|
06
|
Virgo
|
Virgo, la virgen
|
07
|
Libra
|
Libra, la balanza
|
08
|
Scorpius
|
Escorpio, el escorpión
|
09
|
Sagittarius
|
Sagitario, el arquero
|
10
|
Capricornus
|
Capricornio, la cabra de mar
|
11
|
Aquarius
|
Acuario, el aguador o portador de agua
|
12
|
Piscis
|
Piscis, los peces
|
- Nota: Aries es la primera constelación del Zodíaco, comienza sus días el 21 de marzo, el primer día del año de muchos de los calendarios antiguos.
Las constelaciones de esta lista son consideradas las más antiguas, teniendo una importancia evidente en la astrología (disciplina que antiguamente se confundía con la astronomía). Hay que señalar que, a esa lista de 12 constelaciones, convendría añadir, modernamente, una decimotercera: Ophiuchus, el ‘serpentario’. En realidad, astronómicamente hablando, el Sol transita por sus límites, según definidos por la UAI, del 30 de noviembre al 17 de diciembre. Los antiguos probablemente no tomaron esto en consideración (o no lo revelaron) por razones estéticas o astrológicas, o simplemente para el tiempo de los creadores del primer Zodíaco no existía.
Constelaciones de Ptolomeo
Argo Navis, la Nave Argo
Las constelaciones de Ptolomeo (mapa de Durero, 1515)
Además de las doce constelaciones del Zodíaco antes presentadas, Ptolomeo recogió en su inventario otras 36 figuras:
- Andromeda (Andrómeda), la princesa
- Aquila, el águila
- Ara, el altar
- Argo Navis, el navío Argo.
- Auriga, el cochero
- Boötes, el boyero o pastor
- Canis Major (Can Mayor)
- Canis Minor (Can Menor)
- Cassiopeia (Casiopea), la reina
- Centaurus (Centauro)
- Cepheus (Cefeo), el rey
- Cetus, la ballena o monstruo marino
- Corona Australis (Corona Austral), la corona del sur
- Corona Borealis (Corona Boreal), la corona del norte
- Corvus, el cuervo
- Cráter, la copa
- Cygnus, el cisne
- Delphinus, el delfín
- Draco, el dragón
- Equuleus, el pequeño caballo
- Eridanus, el río Erídano, un río mitológico
- Hercules (Hércules), el héroe
- Hidra, la hidra o serpiente de mar, un monstruo mitológico
- Lepus, la liebre
- Lupus, el lobo
- Lyra, la lira
- Ophiuchus (Ofiuco), el serpentario
- Orión (Orión), el cazador
- Pegasus (Pegaso), el caballo alado
- Perseus (Perseo), otro héroe
- Piscis Austrinus (Pez Austral), el pez del sur
- Sagitta, la flecha
- Serpens la serpiente (Ofiuco divide esta constelación en dos partes: Serpens Caput, la cabeza de la serpiente, y Serpens Cauda, la cola de la serpiente
- Triangulum el triángulo
- Ursa Major (Osa Mayor)
- Ursa Minor (Osa Menor)
Las 48 constelaciones inscritas por Ptolomeo en el Almagesto fueron las únicas reconocidas en el mundo occidental hasta el final de la Edad Media. Con excepción de Argo Navis, que fuera dividida en cuatro constelaciones más tarde, todas ellas fueron adoptadas sin cambios por la Unión Astronómica Internacional.
Constelaciones modernas
Sagitario en la obra del astrónomo árabe Abd Al-Rahman Al Sufi, Libro de las Estrellas Fijas escrito alrededor del 964
El mundo occidental perdió el gran tratado astronómico de Ptolomeo por muchos años. Fueron los astrónomos árabes quienes heredaron el Almagesto (de ellos proviene el nombre por el cual se conoce generalmente) y expandieron sus observaciones. Estos destacados estudiosos del cielo añadieron algunas constelaciones que ya no se utilizan actualmente y expandieron otras ya existentes (como Eridanus, a la cual asignaron otra serie de estrellas más al sur). Su propósito fue describir e incorporar estrellas que no eran visibles desde Alejandría, pero sí desde el sur de sus dominios. Tras muchos años, hacia fines de la Edad Media, la obra de Ptolomeo es recuperada en Europa a través de traducciones en latín de fuentes árabes.
A partir del siglo XVI, cuando de Europa salieron navegantes a explorar los mares del sur, los marinos se encontraron, así mismo, con un cielo desconocido, cuyas estrellas requerían ser identificadas por ellos. Por lo tanto, y para que sirvieran de ayuda en la navegación, se idearon nuevas constelaciones.
Johann Bayer y «Uranometría»
Las nuevas constelaciones del sur en Uranometria.
En 1603, el astrónomo alemán Johann Bayer publicó su obra Uranometria, el primer atlas astronómico en cubrir toda la esfera celeste. Además de incluir las 48 constelaciones de Ptolomeo, Bayer añadió 12 adicionales, trazadas para el hemisferio sur, de donde único se veían. Las mismas habían sido originalmente cartografiadas por el navegante holandés Pieter Dirkszoon Keyser, asistido por Frederick de Houtman, durante un viaje por los mares del sur entre 1595 y 1596 (año en que muere Keyser en la expedición). La inclusión de estos nuevos grupos en el atlas de Bayer —la obra maestra de la época— aseguró su permancencia en la lista de constelaciones reconocidas. Éstas fueron:
- Apus, el ave del Paraíso
- Chamaeleon, el camaleón
- Dorado, el pez
- Grus, la grulla; se conoció como Phoenicopterus, el flamenco, en Inglaterra durante el siglo XVII
- Hydrus, la hidra macho
- Indus, el indio americano
- Musca, la mosca
- Pavo
- Phoenix, el ave fénix
- Triangulum Australe, el triángulo del sur
- Tucana, el tucán
- Volans, el pez volador
Los nombres tan exóticos (para la época) de estas nuevas constelaciones, muchas de las cuales reflejaban las nuevas realidades descubiertas durante las grandes exploraciones de esos años les aseguraron un éxito inmediato. Tan es así que rápidamente se incorporaron a la lista de constelaciones antiguas y se siguen usando al presente.
La obra de Bayer trajo otro cambio de percepción en cuando a qué es una constelación. En el pasado, los griegos y demás pueblos de la antigüedad sólo reconocían como parte de una constelación aquellas estrellas que se usaban para trazar las figuras legendarias. Lo demás simplemente era espacio vacío. Bayer, en cambio, con sus planos, comienza a asignar a todo punto en el cielo su lugar como parte de una constelación.
Otras creaciones europeas
Contelaciones del sur, en la obra de Andreas Cellarius Harmonia Macrocosmica escrito en 1661
A partir de Uranometria otros astrónomos europeos se vieron tentados en imponer sus propias creaciones, aunque no todos lograron el mismo éxito de Bayer.
En 1624, el también astrónomo alemán Jakob Bartsch introdujo cinco nuevas constelaciones entre las ya existentes:
Estas constelaciones también se acreditan a Petrus Plancius. Sólo las tres primeras se incorporaron definitivamente a la lista de constelaciones actuales; las demás desaparecieron rápidamente.
Para la misma época, Tycho Brahe elevó al rango de constelación el antiguo asterismo de Coma Berenices, la Cabellera de Berenice, creada de estrellas pertenecientes anteriormente a Leo y Virgo.
En 1643, Anton de Rheita, tratando de cristianizar un poco el panteón estelar, ampliamente pagano, imaginó una figura de Jesús entre Leo e Hydra, pero dicha nueva constelación no tuvo buena acogida. El mismo también propuso una Mosca (Musca Borealis) al lado de Aries, que más tarde fuera rebautizada como Lilium (Flor de lis) durante el reinado de Luis XIV, el "Rey Sol". Es entonces cuando nombrar constelaciones se convirtió en un juego de corte, con el que los proponentes pretendían lograr la gracia de la monarquía.
En Francia, En 1679, Augustin Royer creo la constelación Columba, separando parte de la constelación Canis Major. Además, identificó un grupo de estrellas entre Andrómeda, Cefeo y Pegaso, al cual nombró como el Cetro.
En Prusia, el astrónomo real Gottfried Kirch creó un segundo Cetro al sur de Eridanus, con el fin de hacer lo propio por su monarca. No obstante, ninguno de estos intentos de reivindicación real se impuso en la comunidad, por lo que los grupos nunca lograron el apoyo que necesitaba para integrarse a la lista de constelaciones reconocidas.
Johannes Hevelius
La constelación de Taurus en la obra de Johannes Hevelius Firmamentum Sobiescianum publicado en 1690
Algunos años más tarde, para 1690, desde la ciudad de Danzig (hoy Gdańsk) en la región polaca de Pomerania, Johannes Hevelius propuso otras constelaciones:
- Canes Venatici, los perros de caza
- Lacerta, la lagartija, asterismo que correspondía al Cetro de Augustin Royer
- Leo Minor, el pequeño león
- Lynx, el lince, un grupo de estrellas tan tenues, que el propio Hevelius decía que se necesitaban los ojos de un lince para poder verlas
- Sextans, el sextante
- Vulpecula, la pequeña zorra
- Scutum (Sobieski), el Escudo de Sobieski; ésta es la única constelación moderna que responde a un personaje histórico real (Jan III Sobieski, rey de Polonia), pero como generalmente sólo se le conoce como Scutum, la relación con este monarca pasa totalmente desapercibida.
A diferencia de las anteriores, estas nuevas propuestas no estaban asociadas a algún monarca. Por ello, probablemente, lograron la aceptación de público con mayor facilidad. La excepción fue Scutum, que tuvo que perder el apellido para ser aceptada debidamente (hoy no se recuerda, para nada, que una vez tuvo abolengo).
Hevelius también propuso otros grupos que no tuvieron la suerte de estas siete. Éstas fueron:
Invenciones de Nicolas Lacaille
Nicolas-Louis de Lacaille, un abad, astrónomo y matemático francés, que durante los años 1750 y 1751 vivió en el cabo de África del Sur, se propuso proseguir con la relación sistemática de las estrellas del cielo del hemisferio sur. En su obra Coelum australe stellíferum, publicada póstumamente en 1763, incluyó otros asterismos con el fin de cubrir espacios que todavía no respondían a constelación alguna. Las invenciones de Lacaille se diferencian de todas las anteriores, pues honran las creaciones del ingenio humano (que era la mentalidad de su época), en vez de animales y figuras mitológicas.
- Antlia, la máquina neumática
- Circinus, el compás
- Caelum, el buril
- Fornax, el horno
- Horologium, el reloj
- Mensa, la mesa o meseta
- Microscopium, el microscopio
- Norma, la regla
- Octans, el octante
- Pictor, la paleta del pintor
- Reticulum, la retícula
- Sculptor, el taller del escultor
- Telescopium, el telescopio, el primer grupo en honrar a aquellos que se dedican y se han dedicado al estudio de los astros.
A Lacaille también se debe el desmantelamiento de Argo Navis en cuatro constelaciones menores, que son las que llegan hasta nuestros días:
Constelaciones perdidas
Además de los grupos que se han mencionado previamente, que fueron propuestos, mayormente, durante el siglo XVII, y que nunca gozaron del aval de la comunidad, hay otra serie de asterismos que tuvieron una existencia muy efímera.
Un caso muy particular es el de la constelación de Antínoo (o Antinous), probablemente la única constelación antigua que cayó en desuso. Se supone que Antínoo era la figura de un joven griego a quien el emperador Adriano favorecía. Sus estrellas correspondían a un pequeño grupo al sur de Aquila, el águila. Según versa la historia, Adriano creó esta constelación en el año 132 tras la muerte del adolescente (quien supuestamente se sacrificó para salvar la vida al emperador).
Otras constelaciones perdidas son:
- Apis, la abeja (1603): ésta se convirtió, posteriormente, en Musca Australis, nuestra actual Musca.
- Cancer Minor, el pequeño cangrejo (1613)
- Cerberus, el perro que guarda las puertas del infierno.
- Custos Messium, el guardián de la cosecha (1775)
- Felis, el gato (1805)
- Frederici Honores, la gloria de Frederick, rey de Prusia (1787)
- Gallus, el gallo (c. s. XVII)
- Globus Aerostaticus, el globo aerostático (1798)
- Jordanus, el río Jordán
- Lochium Funis, creada por Johann Elert Bode utilizando algunas estrellas de Pyxis (sólo él la reconoció)
- Machina Electrica, la máquina eléctrica o generador de electricidad (1800)
- Malus, el mástil de la Nave de Argos
- Mons Maenalus, la montaña
- Musca Borealis, la mosca boreal
- Noctua, el búho (el mismo asterismo que Turdus Solitarius)
- Officina Typographica, la imprenta (c. s. XVIII)
- Phoenicopterus, el flamenco (1787)
- Polophylax, el guardián del polo (c. s. XVII)
- Psalterium Georgii, el arpa del rey Jorge II (1781)
- Quadrans Muralis, el cuadrante (1795)
- Ramus Pomifer, la rama del manzano
- Robur Carolinum, el roble de Carlos (1679)
- Sceptrum Brandenburgicum, el cetro de Brandeburgo (1688)
- Sceptrum et Manus Iustitiae, literalmente cetro y mano de la justicia (1679)
- Solarium, el reloj solar
- Tarandus vel Rangifer, el venado o ciervo(1736)
- Taurus Poniatovii, el toro de Poniatowski, rey de Polonia (1777)
- Telescopium Herschelii, el telescopio de Herschel
- Testudo, la tortuga
- Tigris, el río Tigris
- Turdus Solitarius, el tordo (o mirlo) solitario (1776)
- Triangulum Minor, el pequeño triángulo
- Vespa, la avispa (c. s. XVII)
ESTRELLA
En un sentido general, puede afirmarse que una estrella es todo cuerpo celeste que brilla con luz propia en la noche. Ahora bien, de un modo más técnico y preciso, podría decirse que se trata de un cúmulo de materia en estado de plasma en un continuo proceso de colapso, en la que interactúan diversas fuerzas que equilibran dicho proceso en un estado hidrostático. El tiempo que tarde en colapsar dicho cúmulo, depende del tiempo en el que las diversas fuerzas dejen de equilibrar la hidrostásis que da forma a la estrella. [cita requerida]
Generalidades
La energía que disipan en el espacio estas acumulaciones de gas, son en forma de radiación electromagnética, neutrinos y viento estelar; y nos permiten observar la apariencia de las estrellas en el cielo nocturno como puntos luminosos y, en la gran mayoría de los casos, titilantes.
Debido a la gran distancia que suelen recorrer las radiaciones estelares, estas llegan débiles a nuestro planeta, siendo susceptibles, en la gran mayoría de los casos, a las distorsiones ópticas que produce las turbulencia y las diferencias de densidad de la atmósfera terrestre (seeing). El Sol, al estar tan cerca, se observa no como un punto sino como un disco luminoso cuya presencia o ausencia en el cielo terrestre provoca el día o la noche respectivamente.
Descripción
Son objetos de masas enormes comprendidas entre 0,08[1] y 120-200[2] masas solares (Msol). Los objetos de masa inferior se llaman enanas marrones mientras que las estrellas de masa superior parecen no existir debido al límite de Eddington. Su luminosidad también tiene un rango muy amplio yendo desde una diezmilésima a tres millones de veces la luminosidad del Sol. El radio, la temperatura y la luminosidad de una estrella se pueden relacionar mediante su aproximación a cuerpo negro con la siguiente ecuación:
donde L es la luminosidad, σ la constante de Stefan-Boltzmann, R el radio y Te la temperatura efectiva.
Ciclo de vida
Mientras las interacciones se producen en el núcleo, sostienen la hidrostásis del cuerpo y este mantiene su apariencia iridiscente predicho por Niels Bohr en la teoría de las órbitas cuantificadas. Cuando parte de esas interacciones (la parte de la fusión de materia) se dilatan en el tiempo, las partes más externas del objeto comienzan a fusionar sus átomos. Esta parte más externa, por no estar restringida al mismo nivel que el núcleo, produce un aumento del diámetro. Llegados a cierta distancia, dicho proceso se paraliza, para contraerse nuevamente hasta el estado en el que los procesos de fusión más externos vuelven a comenzar y nuevamente se produce un aumento del diámetro. Estas interacciones producen índices de iridiscencia mucho menores, por lo que la apariencia suele ser rojiza. En esta fase, el objeto entra en la fase de colapso, por lo que la fuerza de la gravedad (la otra parte en interacción) y las interacciones de fusión en las capas más externas del objeto, producen una constante variación del diámetro, en las que acaban venciendo las fuerzas gravitatorias en un momento en el que las capas más externas no tienen ya elementos que fusionar.
Se puede decir que dicho proceso de colapso finaliza en el momento en que la estrella no produce fusiones de material, y dependiendo de la masa total de la estrella, la fusión de material entrará en su proceso degenerativo al colapsar por vencer a las fuerzas descritas en el Principio de exclusión de Pauli, produciéndose una supernova.
Formación y evolución de las estrellas
Las estrellas se forman en las regiones más densas de las nubes moleculares como consecuencia de las inestabilidades gravitatorias causadas, principalmente, por supernovas o colisiones galácticas. El proceso se acelera una vez que estas nubes de hidrógeno molecular (H2) empiezan a caer sobre sí mismas, alimentado por la cada vez más intensa atracción gravitatoria. Su densidad aumenta progresivamente, siendo más rápido el proceso en el centro que en la periferia. No tarda mucho en formarse un núcleo en contracción muy caliente llamado protoestrella. El colapso en este núcleo es, finalmente, detenido cuando comienzan las reacciones nucleares que elevan la presión y temperatura de la protoestrella. Una vez estabilizada la fusión del hidrógeno, se considera que la estrella está en la llamada secuencia principal, fase que ocupa aproximadamente un 90% de su vida. Cuando se agota el hidrógeno del núcleo de la estrella, su evolución dependerá de la masa (detalles en evolución estelar) y puede convertirse en una enana blanca o explotar como supernova, dejando también un remanente estelar que puede ser una estrella de neutrones o un agujero negro. Así pues, la vida de una estrella se caracteriza por largas fases de estabilidad regidas por la escala de tiempo nuclear separadas por breves etapas de transición dominadas por la escala de tiempo dinámico (véase Escalas de tiempo estelar).
Muchas estrellas, el Sol entre ellas, tienen aproximadamente simetría esférica por tener velocidades de rotación bajas. Otras estrellas, sin embargo, giran a gran velocidad y su radio ecuatorial es significativamente mayor que su radio polar. Una velocidad de rotación alta también genera diferencias de temperatura superficial entre el ecuador y los polos. Como ejemplo, la velocidad de rotación en el ecuador de Vega es de 275 km/s, lo que hace que los polos estén a una temperatura de 10 150 K y el ecuador a una temperatura de 7 900 K.[3]
La mayoría de las estrellas pierden masa a una velocidad muy baja. En el Sistema Solar unos 1020 gramos de materia estelar son expulsados por el viento solar cada año. Sin embargo, en las últimas fases de sus vidas, las estrellas pierden masa de forma mucho más intensa y pueden acabar con una masa final muy inferior a la original. Para las estrellas más masivas este efecto es importante desde el principio. Así, una estrella con 120 masas solares iniciales y metalicidad igual a la del Sol acabará expulsando en forma de viento estelar más del 90% de su masa para acabar su vida con menos de 10 masas solares.[4] Finalmente, al morir la estrella se produce en la mayoría de los casos una nebulosa planetaria, una supernova o una hipernova por la cual se expulsa aún más materia al espacio interestelar. La materia expulsada incluye elementos pesados producidos en la estrella que más tarde formarán nuevas estrellas y planetas, aumentando así la metalicidad del Universo.
Agrupaciones y distribución estelar
Estrellas ligadas
Las estrellas pueden estar ligadas gravitacionalmente unas con otras formando sistemas estelares binarios, ternarios o agrupaciones aún mayores. Una fracción alta de las estrellas del disco de la Vía Láctea pertenecen a sistemas binarios; el porcentaje es cercano al 90% para estrellas masivas[5] y desciende hasta el 50% para estrellas de masa baja.[6] Otras veces, las estrellas se agrupan en grandes concentraciones que van desde las decenas hasta los centenares de miles o incluso millones de estrellas, formando los denominados cúmulos estelares. Estos cúmulos pueden deberse a variaciones en el campo gravitacional galáctico o bien pueden ser fruto de brotes de formación estelar (se sabe que la mayoría de las estrellas se forman en grupos). Tradicionalmente, en la Vía Láctea se distinguían dos tipos: (1) los cúmulos globulares, que son viejos, se encuentran en el halo y contienen de centenares de miles a millones de estrellas y (2) los cúmulos abiertos, que son de formación reciente, se encuentran en el disco y contienen un número menor de estrellas. Desde finales del siglo XX esa clasificación se ha cuestionado al descubrirse en el disco de la Vía Láctea cúmulos estelares jóvenes como Westerlund 1 o NGC 3603 con un número de estrellas similar al de un cúmulo globular. Esos cúmulos masivos y jóvenes se encuentran también en otras galaxias; algunos ejemplos son 30 Doradus en la Gran Nube de Magallanes y NGC 4214-I-A en NGC 4214.
Estrellas aisladas
No todas las estrellas mantienen lazos gravitatorios estables; la mayoría, lo mismo que el Sol, viajan solitarias, separándose mucho de la agrupación estelar en la que se formaron Estas estrellas aisladas obedecen, tan solo, al campo gravitatorio global constituido por la superposición de los campos del total de objetos de la galaxia: agujeros negros, estrellas, objetos compactos y gas interestelar.
Distribución estelar
Las estrellas no están distribuidas uniformemente en el Universo, a pesar de lo que pueda parecer a simple vista, sino agrupadas en galaxias. Una galaxia espiral típica (como la Vía Láctea) contiene cientos de miles de millones de estrellas agrupadas, la mayoría, en el estrecho plano galáctico. El cielo nocturno terrestre aparece homogéneo a simple vista porque sólo es posible observar una región muy localizada del plano galáctico. Extrapolando de lo observado en la vecindad del Sistema Solar, se puede decir que la mayor parte de estrellas se concentran en el disco galáctico y dentro de éste en una región central, el bulbo galáctico, que se sitúa en la constelación de Sagitario.
La navegación espacial y el posicionamiento estelar
A pesar de las enormes distancias que separan las estrellas, desde la perspectiva terrestre sus posiciones relativas parecen fijas en el firmamento. Gracias a la precisión de sus posiciones, son “de gran utilidad para la navegación, para la orientación de los astronautas en las naves espaciales y para identificar otros astros” (The Encyclopedia Americana).
Estructura estelar
Una estrella típica se divide en núcleo, manto y atmósfera. En el núcleo es donde se producen las reacciones nucleares que generan su energía. El manto transporta dicha energía hacia la superficie y según cómo la transporte, por convección o por radiación, se dividirá en dos zonas: radiante y convectiva. Finalmente, la atmósfera es la parte más superficial de las estrellas y la única que es visible. Se divide en cromósfera, fotósfera y corona solar. La atmósfera estelar es la zona más fría de las estrellas y en ellas se producen los fenómenos de eyección de materia. Pero en la corona, supone una excepción a lo dicho ya que la temperatura vuelve a aumentar hasta llegar al millón de grados por lo menos. Pero es una temperatura engañosa. En realidad esta capa es muy poco densa y está formada por partículas ionizadas altamente aceleradas por el campo magnético de la estrella. Sus grandes velocidades les confieren a esas partículas altas temperaturas.
A lo largo de su ciclo las estrellas experimentan cambios en el tamaño de las capas e incluso en el orden en que se disponen. En algunas la zona radiante se situará antes que la convectiva y en otras al revés, dependiendo tanto de la masa como de la fase de fusión en que se encuentre. Así mismo, el núcleo también puede modificar sus características y su tamaño a lo largo de la evolución de la estrella.
La edad de la mayoría de las estrellas oscila entre 1000 y 10 000 millones de años; aunque algunas estrellas pueden ser incluso más viejas. La estrella observada más antigua, HE 1523-0901, tiene una edad estimada de 13 200 millones de años, muy cercana a la edad estimada para el Universo, de unos 13 700 millones de años.
Generación de energía en las estrellas
A principios del siglo XX la ciencia se preguntaba cuál era la fuente de la increíble energía que alimentaba las estrellas. Ninguna de las soluciones conocidas en la época resultaba viable. Ninguna reacción química alcanzaba el rendimiento necesario para mantener la luminosidad que despedía el Sol. Asimismo, la contracción gravitatoria, si bien resultaba una fuente energética más, no podía explicar el aporte de calor a lo largo de miles de millones de años. Sir Arthur Eddington fue el primero en sugerir en la década de 1920 que el aporte de energía procedía de reacciones nucleares. Existen dos tipos de reacciones nucleares, las de fisión y las de fusión. Las reacciones de fisión no pueden mantener la luminosidad de una estrella debido a su relativamente bajo rendimiento energético y, sobre todo, a que requieren elementos más pesados que el hierro, los cuales son poco abundantes en el Universo. El primer mecanismo detallado de reacciones nucleares de fusión capaces de mantener la estructura interna de una estrella fue descubierto por Hans Bethe en 1938, es válido para estrellas de masa intermedia o elevada y lleva el nombre de su descubridor (ciclo de Bethe o ciclo CNO).
Nebulosa planetaria M-57, ampliamente conocida como Nebulosa del Anillo. Su diámetro es de aproximadamente un año-luz.
|
Imagen de la estrella altamente masiva Eta Carinae, capturada por el telescopio espacial Hubble de la NASA. Las nebulosas circundantes tienen un diámetro longitudinal de aproximadamente 0,5 años luz.
|
Aun así, resultó que las temperaturas que se alcanzan en los núcleos de las estrellas son demasiado bajas como para fusionar los iones. Ocurre que el efecto túnel permite que dos partículas con energías insuficientes para traspasar la barrera de potencial que las separa tengan una probabilidad de saltar esa barrera y poderse unir. Al haber tantas colisiones, estadísticamente se dan suficientes reacciones de fusión como para que se sostenga la estrella pero no tantas reacciones como para hacerla estallar. Existe un óptimo de energía para el cual se dan la mayoría de reacciones que resulta del cruce de la probabilidad de que dos partículas tengan una energía determinada E a una temperatura T y de la probabilidad de que esas partículas se salten la barrera por efecto túnel. Es el llamado pico de Gamow.
Una gran variedad de reacciones diferentes de fusión tienen lugar dentro de los núcleos de las estrellas, las cuales dependen de la masa y la composición.
Normalmente las estrellas inician su combustión nuclear con alrededor de un 75% de hidrógeno y un 25% de helio junto con pequeñas trazas de otros elementos. En el núcleo del Sol con unos 107 K el hidrógeno se fusiona para formar helio mediante la cadena protón-protón:
4¹H → 2²H + 2e+ + 2νe (4.0 MeV + 1.0 MeV)
2¹H + 2²H → 2³He + 2γ (5.5 MeV)
2³He → 4He + 2¹H (12.9 MeV)
Estas reacciones quedan reducidas en la reacción global:
4¹H → 4He + 2e+ + 2γ + 2νe (26.7 MeV)
En estrellas más masivas el helio se produce en un ciclo de reacciones catalizadas por el carbono, es el ciclo CNO o ciclo de Bethe. Esto es representado ejemplarmente en el caso de una estrella con 18 masas solares:
Material combustible
(o Fe)
|
Temperatura en
millones de Kelvin
|
Densidad (kg/cm3)
|
Duración de la combustión
|
H
|
40
|
0,006
|
10 millones a.
|
He
|
190
|
1,1
|
1 millón a.
|
C
|
740
|
240
|
12.000 años
|
Ne
|
1.600
|
7.400
|
12 años
|
O
|
2.100
|
16.000
|
4 años
|
S/Si
|
3.400
|
50.000
|
1 semana
|
Fe-Corteza
|
10.000
|
10.000.000
|
-
|
En las estrellas cuyos núcleos se encuentran a 108 K y cuyas masas van desde las 0.5 a las 10 masas solares el helio resultante de las primeras reacciones puede transformarse en carbono a través del proceso triple-alfa:
4He + 4He + 92 keV → 8*Be
4He + 8*Be + 67 keV → 12*C
12*C → 12C + γ + 7.4 MeV
La reacción global es:
34He → 12C + γ + 7.2 MeV
Composición
EV Lacertae, una estrella muy joven que contiene una metalicidad muy alta.
La composición química de una estrella varía según la generación a la que pertenezca. Cuanto más antigua sea más baja será su metalicidad. Al inicio de su vida una estrella similar al Sol contiene aproximadamente 75% de hidrógeno y 23% de helio. El 2% restante lo forman elementos más pesados, aportados por estrellas que finalizaron su ciclo antes que ella. Estos porcentajes son en masa; en volumen, la relación es 90% de hidrógeno y 10% de helio.
En la Vía Láctea las estrellas se clasifican según su riqueza en metales en dos grandes grupos. Las que tienen una cierta abundancia se denominan de la población I, mientras que las estrellas pobres en metales forman parte de la población II. Normalmente la metalicidad va directamente relacionada con la edad de la estrella. A más elementos pesados más joven es la estrella.
La composición de una estrella evoluciona a lo largo de su ciclo, aumentando su contenido en elementos pesados en detrimento del hidrógeno, sobre todo. Sin embargo, las estrellas sólo queman un 10% de su masa inicial, por lo que globalmente su metalicidad no aumenta mucho. Además, las reacciones nucleares sólo se dan en las regiones centrales de la estrella. Este es el motivo por el que cuando se analiza el espectro de una estrella lo que se observa es, en la mayoría de los casos, la composición que tenía cuando se formó. En algunas estrellas poco masivas los movimientos de convección penetran mucho en el interior, llegando a mezclar material procesado con el original. Entonces se puede observar incluso en la superficie parte de ese material procesado. La estrella presenta, en esos casos, una composición superficial con más metales.
La estrella prototípica
Diagrama de la fusión nuclear en el sol.
|
El Sol es tomado como la estrella prototípica, no porque sea especial en ningún sentido, sino porque es la más cercana a la Tierra y por tanto la más estudiada. La mayoría de las características de las estrellas se suelen medir en unidades solares. Las magnitudes solares son usadas en astrofísica estelar como patrones.
La masa del Sol es:
Msol = 1,9891 × 1030 kg
y las masas de las otras estrellas se miden en masas solares abreviado como Msol.
Clasificación
Clasificación de las estrellas según la clasificación de Morgan Keenan.
La primera clasificación estelar fue realizada por Hiparco de Nicea y preservada en la Cultura Occidental a través de Ptolomeo, en una obra llamada almagesto. Este sistema clasificaba las estrellas por la intensidad de su brillo aparente visto desde la Tierra. Hiparco definió una escala decreciente de magnitudes, donde las estrellas más brillantes son de primera magnitud y las menos brillantes, casi invisibles con el ojo desnudo, son de sexta magnitud. Aunque ya no se emplea, constituyó la base para la clasificación actual.
La clasificación moderna se realiza a través del tipo espectral. Existen dos tipos de clasificación, basados en dos catálogos diferentes: el catálogo de Henry Draper (HD) realizado en Harvard a principios del siglo XX, el cual determina lo que se denomina Tipo espectral, y el catálogo del Observatorio Yerkes, realizado en 1943, el cual determina lo que se denomina Clase de luminosidad.
Tipos espectrales
Esta clasificación distingue las estrellas de acuerdo a su espectro luminoso y su temperatura superficial. Una medida simple de esta temperatura es el índice de color de la estrella.
La clasificación es W, O, B, A, F, G, K, M, L y T yendo de mayor a menor temperatura. Las estrellas de tipo O, B y A son muy calientes, y el tipo M es considerablemente más frío. Los tipos W, L y T se introdujeron recientemente. La temperatura superficial, que determina la clase espectral, también determina el color de la estrella. De esta manera, las estrellas O son azules, mientras que estrellas de menor temperatura superficial (clases K o M) son rojizas, como Betelgeuse o Antares.
Una pequeña guía de los diferentes colores y ejemplos de estrellas pertenecientes al grupo se cita a continuación[7] :
Clases de luminosidad
Clase
|
Descripción
|
Ia
|
Supergigantes Luminosas
|
Ib
|
Supergigantes
|
II
|
Gigantes luminosas
|
III
|
Gigantes
|
IV
|
Sub-gigantes
|
V
|
Enanas (Sol)
|
VI
|
Sub-enanas
|
VII
|
Enanas blancas
|
La clasificación de Harvard de tipos espectrales no determina unívocamente las características de una estrella. Estrellas con la misma temperatura pueden tener tamaños muy diferentes, lo que implica luminosidades muy diferentes. Para distinguirlas se definieron, en Yerkes, las clases de luminosidad. En este sistema de clasificación se examina nuevamente el espectro estelar y se buscan líneas espectrales sensibles a la gravedad de la estrella. De este modo es posible estimar su tamaño.
Ambos sistemas de clasificación son complementarios.
Aproximadamente un 10% de todas las estrellas son enanas blancas, un 70% son estrellas de tipo M, un 10% son estrellas de tipo K y un 4% son estrellas tipo G como el Sol. Tan sólo un 1% de las estrellas son de mayor masa y tipos A y F. Las estrellas de Wolf-Rayet son extremadamente infrecuentes. Las enanas marrones, proyectos de estrellas que se quedaron a medias a causa de su pequeña masa, podrían ser muy abundantes pero su débil luminosidad impide realizar un censo apropiado.
Clasificación gravitacional de estrellas
Las estrellas pueden clasificarse de acuerdo a cuatro criterios gravitacionales instaurados recientemente por la Unión Astronómica Internacional en el 2006. Esta clasificación estelar de la UAI es la más aceptada y comúnmente usada.
Clasificación por centro gravitacional estelar
El primer criterio es la presencia o ausencia de un centro gravitacional estelar, es decir si forman parte de un Sistema Estelar. Las estrellas que forman parte de un sistema estelar (presencia de centro gravitacional estelar) se denominan estrellas sistémicas. Las estrellas que no forman parte de un sistema estelar (ausencia de centro gravitacional estelar) se denominan estrellas solitarias.
Clasificación de estrellas sistémicas por posición
Si una estrella es sistémica (forma parte de un sistema estelar) puede ser a su vez de dos tipos. Las estrellas centrales son aquellas estrellas sistémicas que actúan como centro gravitacional de otras estrellas. Esto quiere decir que otras estrellas las orbitan. Las estrellas sistémicas que orbitan a una estrella central se denominan estrellas satélites.
Clasificación de estrellas por agrupación gravitacional
Esta clasificación de estrellas se basa en distinguir dos tipos de estrellas dependiendo de si estas se agrupan con otras estrellas mediante fuerzas de atracción gravitacional. Esta clasificación refiere a dos tipos de estrellas (cumulares e independientes) de acuerdo a si se encuentran o no unidas a otras estrellas y, además, esta unión no se debe a la presencia de un centro gravitacional estelar; es decir, ninguna estrella gira alrededor de otra y más sin embargo se encuentran unidas gravitacionalmente.
Las estrellas cumulares son aquellas que forman cúmulos estelares. Si el cúmulo es globular, las estrellas se atraen por gravedad (las estrellas se atraen mutuamente). Si el cúmulo es abierto, las estrellas se atraen por gravitación en donde el centro gravitacional es el centro de masa del cúmulo (las estrellas orbitan un centro gravitacional en común que las mantiene unidas). Las estrellas independientes son aquellas que no forman cúmulos estelares con ninguna otra estrella. Sin embargo hay estrellas independientes que sí forman parte de un sistema estelar pues orbitan estrellas o son centro de otras. Este sería el caso de estrellas sistémicas-independientes.
PESO DE LOS CUERPOS
Peso
Diagrama de fuerzas que actúan sobre un cuerpo en reposo sobre una superficie horizontal.
Patrón de un kilogramo masa.
El peso de un cuerpo depende de la intensidad del campo gravitatorio, de la posición relativa de los cuerpos y de la masa de los mismos.
En las proximidades de la Tierra, todos los objetos son atraídos por el campo gravitatorio terrestre, siendo sometidos a una fuerza constante, que es el peso, imprimiéndoles un movimiento uniformemente acelerado, si no hay otras circunstancias que lo impidan.
Definición
El peso es la "fuerza de gravitación universal que ejerce un cuerpo celeste sobre una masa." (DRAE, 2ª acepción)
En otras palabras, el peso, en física clásica, es la medida de la fuerza que ejerce la gravedad sobre la masa de un cuerpo. Normalmente, se considera respecto de la fuerza de gravedad terrestre.
El peso de un cuerpo depende de la intensidad del campo gravitatorio, de la posición relativa de los cuerpos y de la masa de los mismos.
En las proximidades de la Tierra, todos los objetos son atraídos por el campo gravitatorio terrestre, siendo sometidos a una fuerza constante, que es el peso, imprimiéndoles un movimiento de aceleración, si no hay otras circunstancias que lo impidan.
Peso y masa
El dinamómetro sirve para medir el peso de los objetos.
Peso y masa son dos conceptos y magnitudes físicas bien diferenciadas, aunque aún en nuestros días, en el habla cotidiana, el término "peso" se utiliza a menudo erróneamente como sinónimo de masa.
La masa de un cuerpo es una propiedad intrínseca del mismo, la cantidad de materia, independiente de la intensidad del campo gravitatorio y de cualquier otro efecto. Representa la inercia o resistencia del cuerpo a los cambios de movimiento.
El peso de un cuerpo, en cambio, no es una propiedad intrínseca del cuerpo, ya que depende de la intensidad gravitatoria en el el lugar del espacio ocupado por el cuerpo.
Además, bajo la denominación de peso aparente, se incluyen otros efectos, además de la fuerza gravitatoria, tales como el efecto centrífugo, el empuje de Arquímedes, etc. El peso que mide el dinamómetro, es en realidad ese peso aparente.
Unidades de peso
Como el peso es una fuerza, se mide en unidades de fuerza. Sin embargo, las unidades de peso y masa tienen una larga historia compartida, en parte porque su diferencia no fue bien entendida cuando dichas unidades comenzaron a utilizarse.
Sistema Internacional de Unidades Este sistema es el prioritario o único legal en la mayor parte de la naciones civilizadas (excluidas EE.UU., Liberia y Myanmar) por lo que en las publicaciones científicas, en los proyectos técnicos, en las especificaciones de máquinas, etc, las magnitudes físicas se expresan en unidades del sistema internacional de unidades (SI). Así, el peso se expresa en unidades de fuerza del SI, esto es, en newtons (N):
Sistema Técnico de Unidades En el Sistema Técnico de Unidades, el peso se mide en kilogramo-fuerza o kilopondio (kp), definido como la fuerza ejercida sobre unkilogramo de masa por una intensidad de gravedad estándar (g = 9,80665 m/s² ). Entonces:
Otros Sistemas También se suele indicar el peso en unidades de fuerza de otros sistemas, como la dina, la libra-fuerza, la onza-fuerza, etcétera.
La dina es la unidad CGS de fuerza y no forma parte del SI. Algunas unidades inglesas, como la libra, pueden ser de fuerza o de masa. Las unidades relacionadas, como el slug, forman parte de sub-sistemas de unidades.
Por ejemplo: una persona de 60 kg (6,118 UTM) de masa, pesa 588,34 N (60 kgf) en la superficie de la Tierra; pero, la misma persona, en la superficie de la Luna pesaría sólo unos 58,834 N (10 kgf); sin embargo, su masa seguirá siendo de 60 kg (6,118 UTM). [En negrita, Sistema Internacional; (entre paréntesis), Sistema Técnico de Unidades.]
Cálculo del peso
Anomalías del campo gravitacional terrestre (expresado en miligal[1] ) respecto del valor estimado, considerando la variación del radio terrestre.
Contribución de la fuerza centrífuga y la aceleración gravitatoria en el peso.
El cálculo del peso de un cuerpo a partir de su masa se puede expresar mediante la segunda ley de la dinámica:
donde g es la aceleración gravitatoria en el lugar en el que se encuentra el cuerpo. En primera aproximación, se puede expresar con la siguiente fórmula:
Para la Tierra, el valor de la aceleración de la gravedad se fijó convencionalmente en 9,80665 m/s2 en la tercera Conferencia General de Pesos y Medidas convocada en 1901 por la Oficina Internacional de Pesos y Medidas Bureau International des Poids et Mesures.[2]
Comparación del peso en el sistema solar
La siguiente lista describe el peso de una «masa unidad» en la superficie de algunos cuerpos del sistema solar, comparándolo con su peso en la Tierra:
Cuerpo celeste
|
Peso relativo
|
m/s2
|
Sol
|
27,90
|
274,1
|
Mercurio
|
0,377
|
3,703
|
Venus
|
0,907
|
8,872
|
Tierra
|
1
|
9,8226[3]
|
Luna
|
0,165
|
1,625
|
Marte
|
0,377
|
3,728
|
Júpiter
|
2,364
|
25,93
|
Saturno
|
0,921
|
9,05
|
Urano
|
0,889
|
9,01
|
Neptuno
|
1,125
|
11,28
|
Peso humano
Correlación peso y talla
Cuando se habla del peso de un ser humano, se está haciendo referencia a su masa. Por término medio, un recién nacido pesa de 3 a 4 kilogramos y a los doce meses pesa de 9 a 12 kilogramos. El índice de masa corporal establece la relación entre el peso y la talla de las personas.
- IMC de 18,5-24,9 es peso normal.
- IMC de 25,0-29,9 es sobrepeso.
- IMC de 30,0-39,9 es obesidad.
- IMC de 40,0 o mayor y es obesidad severa (o mórbida).
LA LUNA Y SUS FASES
Desde el espacio, la Luna luce como una esfera gris-blanquecina, con cráteres de varios tamaños.
|
Elementos orbitales
|
Inclinación
|
5,1454°
|
Excentricidad
|
0,0549
|
Período orbital sideral
|
27d 7h 43,7m
|
Radio orbital medio
|
384.400 km
|
Satélite de
|
la Tierra
|
Características físicas
|
Masa
|
7,349 × 1022 kg
|
Densidad
|
3,34 g/cm3
|
Área de superficie
|
38 millones de km2
|
Diámetro
|
3.474,8 km
|
Diámetro angular
|
|
Gravedad
|
1,62 m/s2
|
Velocidad de escape
|
2,38 km/s
|
Periodo de rotación
|
27d 7h 43,7min
|
Inclinación axial
|
1,5424°
|
Albedo
|
0,12
|
Composición corteza
|
|
Características atmosféricas
|
Presión
|
3 × 10-10 Pa
|
Temperatura
|
Mínima
|
40 K
|
Media (día)
|
380 K
|
Media (noche)
|
120 K
|
Máxima
|
396 K
|
|
Composición
|
|
La Luna es el único satélite natural de la Tierra. Es el cuerpo más cercano y el mejor conocido. La distancia media entre el centro de la Tierra y la Luna es de 384.400 km. Su diámetro (3.474 km) es de menos de un tercio del terrestre, su superficie es una catorceava parte (37.932.330 km2), y su volumen alrededor de una cincuentava parte (21.860.000.000 km3).
Revoluciones de la Luna
La Luna tarda en dar una vuelta alrededor de la Tierra 27 d 7 h 43 min si se considera el giro respecto al fondo estelar (revolución sideral), pero 29 d 12 h 44 min si se la considera respecto al Sol (revolución sinódica) y esto es porque en este lapso la Tierra ha girado alrededor del Sol. (Ver mes). Esta última revolución rige las fases de la Luna, eclipses y mareas lunisolares.
Como la Luna tarda el mismo tiempo en dar una vuelta sobre sí misma que en torno a la Tierra, presenta siempre la misma cara. Esto se debe a que la Tierra, por un efecto llamado gradiente gravitatorio, ha frenado completamente a la Luna. La mayoría de los satélites regulares presentan este fenómeno respecto a sus planetas. Así pues, hasta la época de la investigación espacial (Lunik 3) no fue posible ver la cara lunar oculta, que presenta una disimetría respecto a la cara visible. El Sol ilumina siempre la mitad de la Luna (exceptuando en los eclipses de luna), que no tiene por qué coincidir con la cara visible, produciendo las fases de la Luna. La inmovilización aparente de la Luna respecto a la Tierra se ha producido porque la gravedad terrestre actúa sobre las irregularidades del globo lunar de forma que en el transcurso del tiempo la parte visible tiene 4 km más de radio que la parte no visible, estando el centro de gravedad lunar desplazado del centro lunar 1,8 km hacia la Tierra.
- Revolución sinódica: es el intervalo de tiempo necesario para que la Luna vuelva a tener una posición análoga con respecto al Sol y a la Tierra. Su duración es de 29 d 12 h 44 min 2,78 s. También se le denomina lunación o mes lunar.
- Revolución sideral: es el intervalo de tiempo que le toma a la Luna volver a tener una posición análoga con respecto a las estrellas. Su duración es de 27 d 7 h 43 min 11,5 s.
- Revolución trópica: es el lapso necesario para que la Luna vuelva a tener igual longitud celeste. Su duración es de 27 d 7 h 43 min 4,7 s.
- Revolución draconítica: es el tiempo que tarda la Luna en pasar dos veces consecutivas por el nodo ascendente. Su duración es de 27 d, 5 h 5 min 36 s.
- Revolución anomalística: es el intervalo de tiempo que transcurre entre 2 pasos consecutivos de la Luna por el perigeo. Su duración es de 27 d 13 h 18 min 33 s.
Movimiento de traslación lunar
El hecho de que la Luna salga aproximadamente una hora más tarde cada día se explica conociendo la órbita de la Luna alrededor de la Tierra. La Luna completa una vuelta alrededor de la Tierra aproximadamente unos 28 días. Si la Tierra no rotase sobre su propio eje, sería muy fácil detectar el movimiento de la Luna en su órbita. Este movimiento hace que la Luna avance alrededor de 12º en el cielo cada día. Si la Tierra no rotara, lo que se vería sería la Luna cruzando la bóveda celeste de oeste a este durante dos semanas, y luego estaría dos semanas ausente (durante las cuales la Luna sería visible en el lado opuesto del Globo).
Sin embargo, la Tierra completa un giro cada día (la dirección de giro es también hacia el este). Así, cada día le lleva a la Tierra alrededor de 50 min más para estar de frente con la Luna nuevamente (lo cual significa que se puede ver la Luna en el cielo). El giro de la Tierra y el movimiento orbital de la Luna se combinan, de tal forma que la salida de la Luna se retrasa del orden de 50 min cada día.
Teniendo en cuenta que la Luna tarda aproximadamente 28 días en completar su órbita alrededor de la Tierra, y ésta tarda 24 h en completar una revolución alrededor de su eje, es sencillo calcular el "retraso" diario de la Luna:
Mientras que en 24 horas la Tierra habrá realizado una revolución completa, la Luna sólo habrá recorrido un 1/28 de su órbita alrededor de la Tierra, lo cual expresado en grados de arco da:
Si ahora se calcula el tiempo que la Tierra en su rotación tarda en recorrer este arco,
Da los aproximadamente 51 minutos que la Luna retrasa su salida cada día.
Para notar el movimiento de la Luna en su órbita, hay que tener en cuenta su ubicación en el momento de la puesta de Sol durante algunos días. Su movimiento orbital la llevará a un punto más hacia el este en el cielo en el crepúsculo cada día.
Movimiento de rotación
Fases de la Luna vistas desde el hemisferio norte (desde el hemisferio sur su orden es inverso)
La Luna gira sobre un eje de rotación que tiene una inclinación de 88,3º con respecto al plano de la elíptica de traslación alrededor de la Tierra. Dado que la duración de los dos movimientos es la misma, la Luna presenta a la Tierra constantemente el mismo hemisferio.
Traslación de la Luna alrededor del Sol
Al desplazarse en torno del Sol, la Tierra arrastra a su satélite y la forma de la trayectoria que ésta describe es una curva de tal naturaleza que dirige siempre su concavidad hacia el Sol. La velocidad con que la Luna se desplaza en su órbita alrededor de la Tierra es de 1 km/s.
Libraciones
Libración
Debido a la excentricidad de la órbita lunar, la inclinación del eje de rotación de la Luna con respecto al plano de la eclíptica y al movimiento de rotación de la Tierra en el curso de una revolución sideral, se logra ver una extensión superficial mayor que la de un hemisferio del satélite, como si estuviese animado de ligeros balanceos de este a oeste y de norte a sur. Estos movimientos aparentes se conocen con el nombre de libraciones y son 3: libraciones en longitud, libraciones en latitud y libración diurna.
Libración en longitud
Se debe a que el movimiento de rotación de la Luna es uniforme mientras que su velocidad angular no lo es. Es máxima en el perigeo y mínima en el apogeo. Debido a esa Libración el satélite tiene un balanceo de oriente a poniente, gracias al cual se logra ver la superficie convexa correspondiente a la de un huso de 7°.
Libración en latitud
Media Luna
Es debido a la inclinación del eje de rotación de la Luna con respecto al plano de su órbita y a la eclíptica. Dicho eje forma un ángulo de 88° 30’ con el plano de la eclíptica y como el de la órbita lunar es de 5º con respecto a la eclíptica, entonces el ángulo formado con el eje de rotación de la Luna con el plano de su órbita es de 6° 30’. Por lo tanto, no solo pueden verse el polo norte y el polo sur de la Luna sino que se logra ver 6° 30’ más allá del polo sur. Esta libración es una especie de cabeceo de norte a sur en un tiempo que no es igual a una revolución sideral pues es de 27.2 días.
Libración diurna
Se debe al hecho de que el radio terrestre no es una cantidad despreciable con respecto a la distancia a la Luna. El valor de esta libración es de casi un grado, valor aproximado a su grado de paralaje.
Debido a las libraciones se conoce un 9% más de la mitad de la Luna.
Sistema binario
La Luna por su tamaño es el quinto satélite del Sistema Solar. No obstante si se adopta como criterio de comparación el cociente de masas con su planeta resulta que Ganímedes es 1/12 500 de la masa de Júpiter, Titán es 1/4 700 la masa de Saturno y la Luna es 1/81,3 la masa de la Tierra. De ésta manera se podría considerar el sistema Tierra-Luna como un sistema binario.
Planeta doble
Comparación en escala de la Luna y la Tierra.
Es la denominación que algunos científicos dan al sistema Tierra-Luna debido al desmesurado tamaño que presenta el satélite con relación al planeta, de sólo 81 veces menor masa, es decir sólo 3,6 veces menor que la Tierra en diámetro (si el planeta fuese del tamaño de una pelota de baloncesto, la Luna sería como una pelota de tenis).
Esta afirmación se apoya en las relaciones existentes entre los distintos planetas del Sistema Solar y sus satélites, variando estas entre las 3,6/1 veces menor de la Luna y las 8 924/1 del satélite XIII Leda con relación a Júpiter.
Otras relaciones son: V Miranda 105/1 con relación a Urano, II Deimos 566/1 con relación a Marte, VI Titán 23/1 con relación a Saturno ó I Ío de 39/1 con relación a Júpiter.
También se apoya esta denominación en la inexistencia de más satélites naturales que orbiten a la Tierra, pues lo habitual es que no exista ninguno (caso de Mercurio o Venus) o que existan multitud de ellos como sucede en los planetas del tipo joviano.
Así, cuando se dice que la Tierra describe una elipse en torno al Sol, en realidad se debe decir que la órbita la describe el centro del sistema Tierra-Luna. Ambos astros, unidos por un eje invisible, forman algo así como una haltera disimétrica que gira en torno a su centro de gravedad.
Debido a que la masa de la Tierra es muy superior a la de la Luna, ese centro, denominado baricentro, que divide a la masa común en dos partes iguales, está situada en el interior del globo terrestre, a unos 4 683 km de su centro. Así, 26 veces al año, la Luna pasa alternativamente de uno al otro lado de la órbita terrestre.
De esas consideraciones, se desprende que los movimientos de la Luna son mucho más complejos de lo que se supone, siendo necesario para determinar con exactitud los movimientos reales de la Luna tener en cuenta nada menos que 1 475 irregularidades en los movimientos lunares diferentes y que incluyen las perturbaciones de su órbita debidas a la atracción ejercida por los demás astros del sistema solar, especialmente Venus (el más cercano) y Júpiter (el de mayor masa), así como entre otros la aceleración secular del movimiento de la Luna.
Órbita de la Luna
La Luna describe alrededor de la Tierra una elipse, por lo que la distancia entre los dos astros varía y también la velocidad en la órbita. Dado que la rotación lunar es uniforme y su traslación no, pues sigue las leyes de Kepler, se produce una Libración en longitud que permite ver un poco de la superficie lunar al Este y al Oeste, que de no ser así no se vería. El plano de la órbita lunar está inclinado respecto a la Eclíptica unos 5º por lo que se produce una Libración en latitud que permite ver alternativamente un poco más allá del polo Norte o del Sur. Por ambos movimientos el total de superficie lunar vista desde la Tierra alcanza un 59% del total. Cada vez que la Luna cruza la eclíptica, si la Tierra y el Sol están sensiblemente alineados (Luna llena o Luna nueva) se producirá un eclipse lunar o un eclipse solar.
La órbita de la Luna es especialmente compleja. La razón es que la Luna esta suficientemente lejos de la Tierra (384.400 km en promedio) que la fuerza de gravedad ejercida por el Sol es significante. Dada la complejidad del movimiento, los nodos de la Luna, no están fijos, sino que dan una vuelta en 18,6 años. El eje de la elipse lunar no está fijo y el apogeo y perigeo dan una vuelta completa en 8,85 años. La inclinación de la órbita varía entre 5º y 5º 18’. De hecho, para calcular la posición de la Luna con exactitud hace falta tener en cuenta por lo menos varios cientos de términos.
Asimismo, la Luna se aleja unos cuatro centímetros al año de la Tierra a la vez que va frenando la rotación terrestre -lo que hará que en un futuro lejano los eclipses totales de Sol dejen de producirse al no tener la Luna suficiente tamaño cómo para tapar el disco solar-. En teoría, dicha separación debería prolongarse hasta que la Luna tardara 47 días en completar una órbita alrededor de nuestro planeta, momento en el cual nuestro planeta tardaría 47 días en completar una rotación alrededor de su eje, de modo similar a lo que ocurre en el sistema Plutón-Caronte. Sin embargo, la evolución futura de nuestro Sol puede trastocar ésta evolución. Es posible que al convertirse nuestra estrella en una gigante roja dentro de varios miles de millones de años, la proximidad de su superficie al sistema Tierra-Luna haga que la órbita lunar se vaya cerrando hasta que la Luna esté a alrededor de 18.000 kilómetros de la Tierra -el límite de Roche-, momento en el cual la gravedad terrestre destruirá la Luna convirtiéndola en unos anillos similares a los de Saturno. De todas formas, el fin del sistema Tierra-Luna es incierto y depende de la masa que pierda el Sol en ésos estadios finales de su evolución.[1]
Tiempo requerido para que la luz viaje desde la Tierra hasta la Luna. El tamaño y la distancia están a escala.
Los eclipses solares y lunares
Luna baja en el cielo; el color rojo es causado por la atmósfera terrestre. En los eclipses de Luna, ésta toma un color parecido
Se deben a una extraordinaria casualidad. El Sol es 400 veces más grande pero también está 400 veces más lejos de modo que ambos abarcan aproximadamente el mismo ángulo sólido para un observador situado en la Tierra. La Luna en un eclipse lunar puede contener hasta tres veces su diámetro dentro del cono de sombra causado por la Tierra. Por el contrario en un eclipse solar la Luna apenas tapa al Sol (eclipse total) y en determinada parte de su órbita, cuando está más distante, no llega a ocultarlo del todo, dejando una franja anular (eclipse anular). La complejidad del movimiento lunar dificulta el cálculo de los eclipses y se debe tener presente la periodicidad con que éstos se producen (Periodo Saros).
Las mareas
En realidad, la Luna no gira en torno a la Tierra, sino que la Tierra y la Luna giran en torno al centro de masas de ambos. Sin embargo, al ser la Tierra un cuerpo grande, la gravedad que sobre ella ejerce la Luna es distinta en cada punto. En el punto más próximo es mucho mayor que en el centro de masas de la Tierra, y mayor en éste que en el punto más alejado de la Luna. Así, mientras la Tierra gira en torno al centro de gravedad del sistema Tierra-Luna, aparece a la vez una fuerza que intenta deformarla, dándole el aspecto de un huevo. Este fenómeno se llama gradiente gravitatorio, el cual produce las mareas. Al ser la Tierra sólida la deformación afecta más a las aguas y es lo que da el efecto de que suban y bajen dos veces al día (sube en los puntos más cercano y más alejado de la Luna).
Un efecto asociado es que las mareas frenan a la Tierra en su rotación (pierde energía debido a la fricción de los océanos con el fondo del mar), y dado que el sistema Tierra-Luna tiene que conservar el momento angular, la Luna lo compensa alejándose, actualmente, 38 mm cada año, como han demostrado las mediciones láser de la distancia, posibles gracias a los retro-reflectores que los astronautas dejaron en la Luna.
Atmósfera de la Luna
La Luna tiene una atmósfera insignificante debido a su baja gravedad, incapaz de retener moléculas de gas en su superficie. La totalidad de su composición aún se desconoce. El programa Apolo identificó átomos de helio y argón, y más tarde (en 1988), observaciones desde la Tierra añadieron iones de sodio y potasio. La mayor parte de los gases en su superficie provienen de su interior.
La agitación térmica de las moléculas de gas viene inducida por la radiación solar y por las colisiones aleatorias entre las propias partículas atmosféricas. En la atmósfera terrestre las moléculas suelen tener velocidades de cientos de metros por segundo, pero excepcionalmente algunas logran alcanzar velocidades de 2.000 a 3.000 m/s. Dado que la velocidad de escape es de, aproximadamente, 11.200 m/s éstas nunca logran escapar al espacio. En la Luna, por el contrario, al ser la gravedad seis veces menor que en nuestro planeta, la velocidad de escape es asimismo menor, del orden de 2.400 m/s. Podemos deducir entonces que si la Luna tuvo antaño una atmósfera, las moléculas más rápidas pudieron escapar de ella para, según una ley de la teoría cinética de los gases, inducir a las restantes a aumentar su velocidad, acelerando así el proceso de pérdida atmosférica. Se calcula que la desaparición completa de la hipotética atmósfera lunar debió realizarse a lo largo de varios centenares de millones de años.
La prácticamente ausencia de atmósfera en nuestro satélite obliga a los astronautas a disponer de equipos autónomos de suministro de gases, conocidos como P.L.S.S. en sus paseos por la superficie. Asimismo, al no existir un manto protector, las radiaciones ultravioleta y los rayos gamma emitidos por el Sol bombardean la superficie lunar, siendo necesario contar con trajes protectores especiales que eviten sus efectos nocivos.
Para la tenue atmósfera lunar cualquier pequeño cambio puede ser importante. La sola presencia de los astronautas altera localmente su presión y su composición al enriquecerla con los gases expirados por ellos y por los que se escapan del módulo lunar cada vez que se efectúa una EVA. Existe el temor de que los gases emitidos por las naves que en la década del setenta alunizaron en la Luna hayan creado una polución o contaminación de igual masa a la de su atmósfera nativa. Aunque estos gases ya deben haber desaparecido en su mayoría, aún hay una preocupación de que queden restos que impidan investigar sobre la atmósfera real de la Luna.
La atmósfera lunar recibe también aportaciones de partículas solares durante el día, que cesa al llegar la noche. Durante la noche lunar, la presión puede bajar hasta no ser más que de 2 billonésimas partes de la atmósfera terrestre, subiendo durante el día hasta las 8 billonésimas partes, demostrando así que la atmósfera lunar no es una atmósfera permanente, sino una concentración de partículas dependiente del medio exo-lunar.
La ionosfera que rodea a nuestro satélite, se diferencia de la terrestre en el escaso número de partículas ionizadas, así como de la presencia de electrones poco energéticos que, arrancados del suelo de la Luna, son emitidos al espacio por el impacto de los rayos solares. Actualmente, se ha podido determinar la existencia de una cola de sodio compuesta por vapores que se desprenden de nuestro satélite de forma similar a como lo hacen los gases de los cometas.
La ausencia de aire, y en consecuencia de vientos, impide que se erosione la superficie y que transporte tierra y arena, alisando y cubriendo sus irregularidades. Debido a la ausencia de aire no se transmite el sonido. La falta de atmósfera también significa que la superficie de la Luna no tenga ninguna protección con respecto al bombardeo esporádico de cometas y asteroides. Además, una vez que se producen los impactos de éstos, los cráteres que resultan prácticamente no se degradan a través del tiempo por la falta de erosión.
Origen de la Luna
Al descubrir que la composición de la Luna era la misma que la de la superficie terrestre se supuso que su origen tenía que venir de la propia Tierra. Un cuerpo tan grande en relación a nuestro planeta difícilmente podía haber sido capturado ni tampoco era probable que se hubiese formado junto a la Tierra. Así, la mejor explicación de la formación de la Luna es que ésta se originó a partir de los pedazos que quedaron tras una cataclísmica colisión con un protoplaneta del tamaño de Marte en los albores del sistema solar (hipótesis del gran impacto). Esta teoría también explica la gran inclinación axial del eje de rotación terrestre que habría sido provocada por el impacto.
La enorme energía suministrada por el choque fundió la corteza terrestre al completo y arrojó gran cantidad de restos incandescentes al espacio. Con el tiempo, se formó un anillo de roca alrededor de nuestro planeta hasta que, por acreción, se formó la Luna. Su órbita inicial era mucho más cercana que la actual y el día terrestre era mucho más corto ya que la Tierra rotaba más deprisa. Durante cientos de millones de años, la Luna ha estado alejándose lentamente de la Tierra, a la vez que ha disminuido la velocidad de rotación terrestre debido a la transferencia de momento angular que se da entre los dos astros. Este proceso de alejamiento continúa actualmente a razón de 38 mm por año.
Tras su formación, la Luna experimentó un periodo cataclísmico, datado en torno a hace 3800-4000 millones de años, en el que la Luna y los otros cuerpos del Sistema Solar interior sufrieron violentos impactos de grandes asteroides. Este período, conocido como intenso bombardeo tardío (late heavy bombardment), formó la mayor parte de los cráteres observados en la Luna, así como en Mercurio. El análisis de la superficie de la Luna arroja importantes datos sobre este periodo final en la formación del Sistema solar. Posteriormente se produjo una época de vulcanismo consistente en la emisión de grandes cantidades de lava, que llenaron las mayores cuencas de impacto formando los mares lunares y que acabó hace 3000 millones de años. Desde entonces, poco más ha acaecido en la superficie lunar que la formación de nuevos cráteres debido al impacto de asteroides.
Recientemente, sin embargo, los datos enviados por la sonda japonesa SELENE han mostrado que dicho vulcanismo ha durado más de lo que se pensaba, habiendo acabado en la cara oculta hace 2500 millones de años.[8]
Relieve lunar
Cuando Galileo Galilei apuntó su telescopio hacia la Luna en 1610 pudo distinguir dos regiones superficiales distintas. A las regiones oscuras las denominó «mares», los cuales por supuesto no tienen agua y llevan nombres tales como Mar de la Serenidad y Mar de la Fecundidad; son planicies con pocos cráteres. El resto de la superficie lunar es más brillante, y representa regiones más elevadas con una alta densidad de cráteres, tales como Tycho y Clavius. En la superficie lunar también existen cadenas de montañas que llevan nombres como Alpes y Apeninos, igual que en la Tierra.
Cráter Tycho en la superficie lunar
|
Cráter Tsiolkovsky fotografiado desde el Apolo 15
|
Mar de la Tranquilidad fotografiado desde el Apolo 8
|
Mar Imbrium y el cráter Copérnico, la cordillera en la parte superior son los montes Carpatos
|
La observación lunar
La primera foto de la Tierra vista desde la Luna fue transmitida el 23 de agosto de 1966 desde el Lunar Orbiter I a la estación espacial de Robledo de Chavela.
Artículos principales: Historia de la observación lunar y Mitología Lunar
Desde tiempos inmemoriales la Luna sorprendió al hombre con su gran tamaño, sus ciclos orbitales y sus fases. Fue uno de los dos cuerpos más importantes junto con el Sol y su periodicidad sirvió como calendario en muchas culturas. En Irlanda se ha encontrado una roca de hace 5.000 años que parece ser la representación más temprana de la Luna descubierta hasta la fecha.
En muchas culturas prehistóricas y antiguas, la Luna era una deidad u otro fenómeno sobrenatural. Una de las primeras veces que se intentó ofrecer una visión racional y científica de lo que era la luna fue en la Antigua Grecia. La propuso el filósofo Anaxágoras quien razonó que tanto el Sol como la Luna eran dos cuerpos gigantes, rocosos y esféricos y que la luz emitida por la Luna no era más que luz reflejada del Sol. Su idea ateísta del cielo fue una de las causas de su encarcelamiento y posterior exilio.
En la Edad Media, antes de la invención del telescopio, cada vez más gente fue reconociendo que la Luna era una esfera ya que se creía que tenía que ser "perfectamente lisa".
En 1609, Galileo Galilei observó por primera vez la Luna con telescopio y afirmó en su libro Sidereus Nuncius que no era lisa ya que tenía cráteres. Más tarde, aun en el siglo XVII Giovanni Battista Riccioli y Francesco Maria Grimaldi trazaron un mapa de la Luna y dieron nombre a muchos de esos cráteres, nombres que se mantienen hoy día.
La exploración lunar
Aldrin pone la bandera de EEUU en la superficie lunar
Artículo principal: Exploración de la Luna
El Programa Lunik de la antigua Unión Soviética tuvo por objetivo llegar con naves no tripuladas a la Luna. El Lunik 3 logró fotografiar la cara oculta, Lunik 9 logró posarse suavemente, Lunik 10 orbitó por primera vez la Luna. Dos vehículos Lunahod lograron pasearse por su superficie y tras el alunizaje del Apolo 11 tripulado, las naves Lunik 16, Lunik 20 y Lunik 24 trajeron unos 300 gramos de polvo lunar a la Tierra.
El programa Ranger estadounidense estrellaba sus naves contra la Luna para lograr con sus cámaras fotos detalladas. Sólo Ranger 7, 8 y 9 lograron su objetivo. El programa Lunar Orbiter puso cinco naves no tripuladas en órbita lunar entre los años 1966-1967 para cartografiarla y ayudar al Programa Apolo para poner un hombre en la Luna, hito histórico que se logró con la llegada del Apolo 11 el 20 de julio de 1969 y que se retransmitió a todo el planeta desde las diferentes instalaciones de la Red del Espacio Profundo. El MDSCC en Robledo de Chavela (Madrid, España) perteneciente a ella, sirvió de apoyo durante todo el viaje de ida y vuelta.[9] [10] Al programa Ranger le sucedió el programa Surveyor que tras el Lunik 9 logró alunizajes suaves de naves no tripuladas.
Misión del Apolo 17.
Las naves estadounidenses Clementine y Lunar Prospector, las japonesas Hiten y Selene, la europea Smart 1, la china Chang'e 1 y la hindú Chandrayaan-1 representaron una vuelta a la Luna, abandonada desde 1973. Su misión fue detectar la presencia de vapor de agua mezclado con polvo lunar y procedente de cometas que se han estrellado cerca de los polos lunares en cráteres donde nunca son iluminados por el Sol.
En septiembre de 2005, la NASA anunció el proyecto de un nuevo viaje tripulado a nuestro satélite, programado para el año 2018.
En septiembre de 2009, se anunció que la sonda india Chandrayaan-1, que orbitaba la Luna, detectó finas películas de agua en la superficie.[11]
Curiosidades
- El término selenita, de origen griego, es el supuesto gentilicio de este satélite. Proviene del nombre "Selene", diosa asociada a la Luna.
- La palabra inglesa para mes, month, proviene de moonth, una forma sajona primitiva para lunación (siendo la palabra moon, ‘Luna’ en inglés), debido al primitivo uso de un calendario lunar en la cultura sajona. De forma similar, el nombre neerlandés de la Luna es maan, y la palabra neerlandesa para "mes" es maand.
- En castellano el primer día de la semana, «lunes», tiene su raíz en el «día de la Luna» (Lunae dies, en latín). Esto se puede ver también en el idioma inglés, en que monday viene de moon day, en italiano —Lunedi—, en francés donde se llama Lundi y en neerlandés donde se llama Maandag. (Ver semana.)
- En el idioma turco, la palabra Ay (mes) también significa luna. El origen de esta coincidencia es el hecho de que el musulmán es un calendario lunar.
- En los idiomas chino y japonés las palabras 'luna' y 'mes' se escriben con el mismo carácter: 月 (lo que se conoce como kanji en japonés o hanzi en chino), debido a que ambas culturas emplean calendarios lunares.
- Los kiliwa creen que la Luna es una potencia masculina. Según su propia mitología, el dios de la Luna Meltí ?ipá jalá(u) fue el creador de todo el universo.
- Una de las etimologías más comunes sobre el origen de la palabra México dice que significa: "Lugar en el centro de la luna" o más precisamente: "En el lago de la luna".
- El 9 de septiembre de 1969, los Estados Unidos emitieron una estampilla celebrando la llegada del hombre a la Luna, ocurrida 40 días antes. Esta emisión fue publicitada como "La primera estampilla en la Luna" y aún es común que se piense que tiene un gran valor, aunque éste es ínfimo en realidad, dada su gran tirada.
- En 1953, el abogado chileno Jenaro Gajardo Vera registró la propiedad de la Luna pagando 42,000 pesos de la época, oficializándose la escritura el 25 de septiembre de 1954 en el Conservador de Bienes Raíces de la ciudad de Talca. Según sus propios dichos, el presidente estadounidense Richard Nixon cumplió la formalidad de pedirle permiso para el alunizaje de la Apolo 11 en 1969, a lo que respondió afirmativamente.[12] Sin embargo, en 1967 se firmó un tratado en las Naciones Unidas que prohíbe la compraventa de objetos exteriores a la Tierra.,[13] a pesar de lo cual, en 1980, el estadounidense Dennis Hope formaliza de nuevo en una oficina del registro de San Francisco la "compra" de la Luna, dedicándose desde entonces a vender "parcelas" en suelo lunar.[14]